

Atelier *Climate-Smart Solutions*: L'analyse, la présentation et l'interprétation de l'information climatique utile aux agriculteurs

Présenté par Dr. Roger Stern, Université de Reading/Stats4SD et Dr. Caroline Staub, Université de Floride

Introduction: Cette formation de deux jours vise à former des techniciens dont le rôle consiste à récolter, manipuler et analyser des données d'ordre climatique ou environnementale et à présenter les résultats de ces analyses à un public composé de non-techniciens.

Objectifs: Les participants devront:

1. Analyser l'information climatique à l'aide du logiciel accès libre R-Instat

2. Développer des graphiques dont l'interprétation est suffisamment simple et pertinente pour guider la discussion des agents de terrain avec les agriculteurs

3. Interpréter les résultats des analyses afin de pouvoir les partager avec les agents de terrain de façon claire et précise.

Programme du 5 Juin:

Debut: 9:00 Fin: 17:00

- 1. Introduction du programme "climate-smart solutions" du projet AREA.
- 2. L'intégration de l'information climatique a la prise de décision agricole.
- 3. L'usage du logiciel R-Instat et du fichier Microsoft Excel pour analyser l'information climatique
- 4. Les analyses de base
- 5. La présentation des résultats sous forme de tableaux et graphiques

Programme du 6 Juin:

Debut: 9:00 Fin: 17:00

- 1. Introduction du menu "climat" du logiciel R-Instat.
- 2. Les synthèses pratiques: le début et la fin de la saison des pluies.
- 3. Préparer des graphiques de qualité
- 4. Analyses additionelles
- 5. Evaluation de l'atelier

Analysing climatic data with R-Instat

Introduction

R-instat est un logiciel conçu pour l'analyse statistique. Toutes les opérations y sont effectuées à partir du langage statistique R. En plus, R-instat comporte un menu spécial 'climatique'.

Les méthodes actuelles sont conçues pour l'analyse des données quotidiennes. Ce guide utilise des données quotidiennes de deux (02) stations provenant de la Guinée (Conakry) et comportent quatre (04) paramètres chacune. Ces données sont accessibles librement à travers la bibliothèque R-Instat, par conséquent, les exemples présentés dans ce guide peuvent être suivis par n'importe qui. Ce guide fait suite au guide "Preparing climatic data for analysis" et vise à renforcer la maîtrise de l'analyse statistique et de la gestion de l'information climatique.

Nous sommes reconnaissants envers l'agence nationale de météorologie de la Guinée de nous avoir permis d'utiliser ces données à des fins de formation.

1) Produire un résume pertinent

Si vous avez parcouru le premier guide, vous devriez avoir votre propre copie du fichier intitulé Guinea2.rds.

** **Ouvrez ce fichier**, soit du dossier dans lequel cous l'avez enregistré, soit de la Instat library:

** ('S'il se trouve dans le Instat library, appuyez sur **Open From Library > Load from Instat Collection > Browse > Climatic > Guinea** and ouvrez le fichier intitule **Guinea2.rds**, Fig. 1

Data View														
-	Station (f)	Date (D)	year	month	day_	doy	Rain	RelHu	Tmax	Tmin				
1	Kankan	1950-01-01	1950	Jan	1	1	0.0	NA	35.8	13.0				
2	Kankan	1950-01-02	1950	Jan	2	2	0.0	NA	34.8	15.6				
3	Kankan	1950-01-03	1950	Jan	3	3	0.0	NA	34.7	18.0				
4	Kankan	1950-01-04	1950	Jan	4	4	0.0	NA	33.9	19.7				
5	Kankan	1950-01-05	1950	Jan	5	5	0.0	NA	33.8	14.0				
6	Kankan	1950-01-06	1950	Jan	6	6	0.0	NA	31.2	12.4				
7	Kankan	1950-01-07	1950	Jan	7	7	0.0	NA	33.0	11.9				
8	Kankan	1950-01-08	1950	Jan	8	8	0.0	NA	34.4	18.4				
9	Kankan	1950-01-09	1950	Jan	9	9	0.0	NA	34.3	13.2				
10	Kankan	1950-01-10	1950	Jan	10	10	0.0	NA	33.5	12.5				
11	Kankan	1950-01-11	1950	Jan	11	11	0.0	NA	33.3	12.6				
12	Kankan	1950-01-12	1950	Jan	12	12	0.0	NA	33.5	12.5				
1	Guinee2			-				•		>				

Fig.	2	Les	metadata	propres	à	ces	donnees
------	---	-----	----------	---------	---	-----	---------

	C	olumn N	/letadata		
	Name	label	class	Climatic_Type	~
1	Station		factor	station	
2	Date		Date	date	
3	year		numeric	year	
4	month_abbr		ordered, fa	ctmonth	
5	day_in_month	1	integer	day	
6	doy_366		integer	doy	
7	Rain		numeric	rain	
8	RelHum		numeric	NA	
9	Tmax		numeric	temp_max	
10	Tmin		numeric	temp_min	~
4 }	Guinee2	: <		>	

** Sur le **toolbar**, appuyez sur l'icône *i* pour obtenir les metadata (métadonnées) associées à ces données (Fig. 2).

Dans les métadata, chaque ligne fournis des informations sur une variable ou une colonne associées aux données. Vérifiez que l'information inclut le type climatique, c'est-à-dire que ces données ont été préparées pour une analyse climatique.

** Appuyez soit sur le même bouton soit sur la flèche semi-circulaire, pour restaurer les fenêtres selon la disposition par défaut.

Nous parcourrons à nouveau un exemple du « **inventory** » du menu **climatic** afin de pouvoir produire des résumes climatique.

Fig. 3 Climatic > Che	ck Data	a > Inventory	Fig	4 Tracer	les donne	es de pluie
Climatic Tools View Hel	p		Inventory Plot			
File	R	C	Data Frame:			Date:
Dates	•		Guinee2	~		Date1
Define Climatic Data			Numerics	^		Element(s):
Check Data		Inventory	Date 1	100		Guinee2
Prepare	•	Display Daily	year		Add	Rain
Climdex		Boxplot	day in month			
Dennika		OC Rainfall	doy_366		Data	
Discribe		OC Temperatures	Rain	*	Options	Station (Option
PICSA	-	de rempendioresm	Inventory Plot (Options.		Station
CM SAF	•		Options			
Model	•		Plot Type	_	_	
Seasonal Forecast Support			O Date Plot	Year - Di	OY Plot Face	et By: Default
			Flip Coordina	tes		
			🗹 Display Rain	Days		
			Graph Title:	Inventory Plot		
			Save Graph			
			Comment:	Code generate	ed by the dialog,	Inventory Plot
			Ok	Reset	Close	Help

** Selectionnez *Climatic* > *Check Data* > *Inventory*, Fig. 3.

- ** Completez le dialogue comme présenté ci-dessus Fig. 4.
- ** Appuyez sur **OK** pour obtenir les résultats présentés ci-dessous Fig. 5.

Fig. 5 Tendances saisonnières de pluie

L'une de nos préoccupations concernent les données manquantes, en particulier à Kankan. Il manque des données sur 4 ou 5 ans. Heureusement ces données manquantes se trouvent particulièrement pendant la période sèche de l'année et qui, par conséquent, n'affecteront pas bea`oup les totaux annuels. Une autre étape préliminaire consiste à faciliter le calcul du nombre annuel de jours de pluie.

** Appuyez sur **Prepare > Column: Calculate > Calculations**, Fig 6.

** Dans la calculatrice, cliquez sur le **menu déroulant** intitulé **Basic** et choisissez le clavier logical (logique), Fig. 7. La calculatrice se développe pour afficher un clavier supplémentaire, Fig. 8

	Fig. 8 Compléter le dialogue Calculate														Fig. 9 La nouvelle variable									
alculations														Data View										
-	Data + 0.0E	_													Rain	RelHu	Tmax	Tmin	Rainday (I)					
Expression	nan 20.65		Texas	d and D			- Show	August and a state						234	0.0	NA	27.3	20.3	FALSE					
Data Course			Basic	s and sy	AUDOIS	~ 1	_ Show /	Logica	and S	umhole				235	8.2	NA	28.2	21.5	TRUE					
Guinee2	~		7	8	9	1		×	ça	5	28			236	0.4	NA	27.6	21.1	FALSE	1				
			4	5	6	*	A		1.	T	8			237	0.0	NA	28.2	20.9	FALSE	1				
Variables	2		1	2	2			-			1			238	0.0	NA	29.8	20.5	FALSE					
dov 366	_	Add	-	-	-	-	Clear			1	1			239	1.7	NA	29.5	21.2	TRUE					
Rain	_		Del	0	0	+	_	7674	76/70	1				240	2.2	NA	28.7	21.5	TRUE					
Tmax		Data						ifels	0	match	whe	en b	etween	241	6.0	NA	26.2	21.0	TRUE					
Tmin	¥	Options				Help		іб.Л	8	lis.na	duplic	ated	near	242	0.3	NA	28.8	20.9	FALSE					
Try	[1 FALSE	FALSE FALSE	FALSE F	ALSE F	ALSE F	ALSE FA	L							243	17.9	NA	23.6	19.4	TRUE					
El a va		1		-			-							244	25.3	NA	30.3	19.6	TRUE					
Save Resu	t into Rand	say					4							245	0.5	NA	27.8	20.7	FALSE					
Comment.	Code genera Reset	ted by the diak Close	og, Calcul	Help		To Scrip	x							She	Guinee2	000 (of 420)63 ro	: «	>				

** Comme présenté sur la Fig. 8 sélectionnez la variable intitule *Rain*. Double-clickez, ou appuyez sur *Add button* pour l'ajouter à l'expression.

** Appuyez sur le symbole > ensuite sur **0.85**, Fig. 8. L 'expression devient donc **Rain** > **0.85**.

** Appuyez sur *Try*, Fig. 8, pour vous assurer de la validité de votre expression.

Ceci devrait montrer FAUX pour les premières rangées de données, Fig. 8. Ceci est dû au fait que ce sont des jours secs, c'est-à-dire que la quantité de pluie est égale à 0, et est donc inférieure à 0,85 mm. Si vous obtenez: **"Command produced an error or no output to display**." ("La commande a produit une erreur ou aucune sortie à afficher."), vous devrez corriger l'expression.

** Enregistrez les résultats dans une colonne intitulée *Rainday*, Fig, 8 puis appuyez sur OK.

Le résultat s'affiche sur Fig. 9 pour un certain nombre de jours.

Faites défiler les données vers le bas pour confirmer, Fig. 9, que lorsqu'il y a une pluie de plus de 0,85 mm, la nouvelle colonne dit VRAIE. Sinon, elle dit FAUX. C'est un exemple de variable logique de la langue R. Il peut être utilisé dans les calculs, quand TRUE est interprété comme 1, et FALSE = 0.

Ainsi, comme nous le montrons ci-dessous, R-Instat peut totaliser le nombre de VRAIES valeurs chaque année, pour donner le nombre de jours de pluie.

Now move to the Climatic > Prepare menu in R-Instat ** Select *Climatic* > *Prepare* > *Climatic Summaries*, Fig. 10.

limatic Tools View Hel			Climatic Summary			
Dates	R	C 🕜	Annual		Annual + Within	Within Year
Define Climatic Data			Data Frame:			
Check Data			Guinee2	~		Station:
Prepare		Transform	Transa and			Station
Climdex	_	CT	Variables			Date:
Bernard		Climatic Summaries	Date			Date
Describe	•	Start of the Rains	year day in month	_	Add	Element:
PICSA	•	Spells	day_in_inorian	-		Rain
CM SAF	•	Extremes	Rain	_	Data	Day of Year:
Model	•	End of Rains	Tmax	*	Options	doy_366
· · · · ·		Evanotranspiration	Options			Year:
Seasonal Forecast Support	•	Evaporarispitationi	Store Results in [Data		year
			Print Results to O Top Unused Lev Omit Missing Valu Day Range	lutput reis ues (doy_	366 >= 1) & doy_36	Summaries 6 <= 366"
			Comment: Code	e generate	ed by the dialog, Clin	natic Summary
			Ok E	lanat	Close	Halo To S

** Sélectionnez la colonne Rain (Pluie) comme l'élément, Fig. 11.

** Cliquez sur la case à cocher **Omit Missing Values** pour omettre les valeurs manquantes. (Sinon, le processus résumé est annulé chaque fois qu'il y a un jour manquant pendant l'année.)

** Appuyez sur le bouton **Summaries** pour produire le sous-dialogue présentée sur la figure 12.

** Décocher N Non missing and N Total et cocher N Missing, Fig. 12

N Non Missing	Ti Total
N Missing	Mode
n_distinct	
All but (unordered) Factor	
Minimum	Maximum
Range	
Numeric	
Sum	Median
Mean	Standard Deviation
Variance	
Quartiles	
Lower Quartile	Upper Quartile

Fig.	12	Sous-dialo	gue d	de «	Summaries »
------	----	------------	-------	------	-------------

Select Day of Year Range	
From	То
Fixed Day Variable Day March	Fixed Day
F	Ref.um Help

Fig. 13 Sous dialogue "Day of Year"

** Appuyez sur **Return** pour revenir au dialogue principal, Fig. 11.

Si l'objectif était d'obtenir les totaux pluviométriques pour toute l'année, il faudrait cliquer sur OK des maintenant. Mais nous cherchons les totaux saisonniers soit de mars à octobre.

- ** Donc, cliquez sur **Day Range** sur la Fig. 11.
- ** Changez le **From**(De) mois en **mars** et le mois de **To**(A) jusqu'en **octobre**, Fig. 13.
- ** Appuyez sur **Return** pour revenir au dialogue principal, Fig. 11; puis appuyez sur **OK**.

Une nouvelle base de données est produite, avec 116 lignes soit l'ensemble des années des deux stations.

** Retournez au dernier dialogue – appuyez a nouveau sur **Climatic> Préparer> Climatic Summaries**.

- ** Changez l'élément en Raindays, Fig. 14.
- ** Appuyez sur **Summaries**, Fig. 14 et décochez la case pour produire **N Missing**.
- ** Appuyez sur **Return** dans le sous-dialogue, puis sur **OK**.

Fig. 14 L	.es resumes	climatiques		Fig.	. 15 Les	resume	s produi	ts	
imatic Summary		×			[Data Viev	/		
Annual	Annual + Within	n Within Year	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Station (f) Nankan	year 2014	count_mis ວາ	sum_Rain	sum_Rainday	1
Data Frame:			66	Kankan	2015	0	1313	91	
Guinee?	~	Station:	67	Kankan	2016	0	1333	92	
JUI 1002		Station	68	Kankan	2017	0	494	32	
Variables	^	Date:	69	Koundara	1970	0	849	61	
doy_366		Date	70	Koundara	1971	0	994	63	
Rain	Add	Element:	71	Koundara	1972	154	186	10	
Tmin	1.00	Rainda	72	Koundara	1973	61	902	63	
RelHum	Data	Day of Year:	73	Koundara	1974	31	1264	71	
Rainday	✓ Options	doy_366	74	Koundara	1975	245	0	0	1
Options		Year:	75	Koundara	1976	0	1238	66	1
Dick Deckets Office		year	76	Koundara	1977	0	732	54	1
Print Results to Outpu	r.		77	Koundara	1978	31	886	52	
Drop Unused Levels			78	Koundara	1979	61	917	66	
Omit Missing Values		Sum naries	79	Koundara	1980	0	1194	62	
Day Range	(dov 366 >= 61) & dov	366 <= 305"	80	Koundara	1981	0	1103	85	
			81	Koundara	1982	32	1142	65	۰,
Comment: Code ger	nerated by the dialog, (Climatic Summary	4 1	Guinee2 Gui	inee2_by_S	Station_year		10	,
Ok Reset	Close	Help To Script	She	wing 116	of 116 r	owsish	owing 5	of 5 column	15

Les résultats sont présentés sur la Fig. 15. Par exemple, en 2016, Kankan a enregistré un total de 1333 mm entre mars et octobre après 92 jours de pluie.

Les premières années à Koundara ont aussi beaucoup de valeurs manquantes. Le Climatic Summaries propose une option pour gérer cela. Mais nous vous en présentons une autre ici.

** Utilisez à nouveau le dialogue **Prepare > Column : Calculate > Calculations**. Vous pouvez **recall the last 10 elements** (rappeler les 10 derniers éléments) sur le toolbar. Complétez le calcul comme indiqué sur la figure 17. Ensuite, toute année comptant plus de 29 jours manquants aura comme resultat le mot « missing » (manquant).

Cet exercise n'est pas si facile, donc les chiffres sont inclus dans la figure 17 pour fournir l'ordre, comme suit:

** Étape 1: Vérifiez que vous êtes sur le bon bloc de données. C'est **Guinee2 by Station_year.**

- ** Étape 2: Appuyez sur la fonction ifelse.
- ** Étape 3: Sélectionnez la colonne appelée **count_missing_rain**.
- ** Étape 4: Appuyez sur le signe ">" et ajoutez **29** à la formule.
- ** Tapez <comma> puis NA puis une autre <comma>.
- ** Étape 5: Sélectionnez la colonne appelée sum_Rain.

** Étape 6: Vérifiez que la formule est maintenant **ifelse (count_missing_Rain> 29, NA, sum_Rain).**

** Étape 7: Intitulez la colonne résultante « raintot ».

Fig. 16 Setting summary data to missing

Fig.17 Resulting data

Calculations													Data View								
Expression else(count	missing Rain>	29.NA su	m Rain	0	6	(e						63	ation (f) nkan	year 2012	count_	sum_Rai 1375	sum_Rai 91	raintot 13/5	rainday 91	mean 15.1	rai ^
and and a second		Lasfas	land C.	-	0	C Show	Arra marta					64	nkan	2013	0	1233	80	1233	80	15.4	
		Davia	and by	mbors	*	LI SHOW	l'ania					65	nkan	2014	31	878	61	NA	NA	NA	
Data Franci	1	Dasic				0	Logica	n and 2	oy nations	1		66	nkan	2015	0	1313	91	1313	91	14.4	
Guinee2_by_Station_year V		1	8	9	1		×	Ç.	3	4		67	hkan	2016	0	1333	92	1333	92	14.5	
Variables		4	5	6		•		.(=	1	8		68	nkan	2017	0	494	32	494	32	15.4	
Sation 2		1	2	1			1	n		1		69	undara	1970	0	849	61	849	61	13.9	
wiar S	Add	-	-	Ľ.	-	Clear		11	1	-		70	undara	1971	0	994	63	994	63	15.8	
count_missing_Rain		Del	0	()	+		2,2	7.1%)	100		71	undara	1972	154	186	10	NA	NA	NA	
sum_Rain							felt	e	2	when	between	72	undara	1973	61	902	63	NA	NA	NA	- 84
sum_nancey	Data			-		-		-	-			73	undara	1974	31	1264	71	NA	NA	NA	
	opeona		_	11	Help	_	181	a	1s.na	duplicated	near	74	undara	1975	245	0	0	NA	NA	NA	
Try 11376.5 14	38.7 1457.8 1	726,5 180	7.8 175	95.0 130	0.1 198	17.1 8						75	undara	1976	0	1238	66	1238	66	18.8	
			-			_	-					76	undara	1977	0	732	54	732	54	13.6	
Save Result into raintot	8			7		~						77	undara	1978	31	886	52	NA	NA	NA	
-						-						78	undara	1979	61	917	66	NA	NA	NA	v
Comment: Code general	ed by the dialo	og, Calcul	ations	-	_	_						4.5	Guinee2	Guinee2	by Sta	tion_year			14		>
Ok Reset	Close		Help		To Scr	ipt							Showin	ng 116	of 11	6 rows	Showi	ng 8 of	8 colu	Imns	

** Étape 8: Cliquez sur le bouton Try pour vérifier que la commande donne des résultats et non une erreur.

** Appuyez sur **OK** pour produire une nouvelle colonne.

Maintenant, la même chose est faite pour le nombre de jours de pluie.

** Récupérez le dialogue - utilisez la fleche semi-circulaire sur le toolbar.

** Dans la formule, le point 6 de la figure 17 transforme la variable **sum_Rain** en

sum Rainday. (Habituellement, nous vous suggérons d'éviter de taper dans ce champ, mais il est tentant de taper simplement le mot « day » ici.)

- ** Renommez le (Étape 7), appelez le « Rainday »
- ** Appuyer sur OK.

Avec les totaux pluviométriques et le nombre de jours, la pluie moyenne par jour de pluie peut également être calculée facilement.

** Récupérez le dernier dialogue (ou utiliser à nouveau Prepare>

Column>Calculate >Calculations).

- ** Remettre la calculatrice sur **Basic**, Fig. 18.
- ** Appuyez sur le bouton Clear (Effacer)

alculations							×	Describe	Model	Climat
Expression raintot/rainda	y .				÷	1		One	Variable	,
Data Frame		Basic Basic			Ŷ	Show	Arguments	Two	Variables	
Guinee2_by_Station_year 😒		7	8	9	1			Three	e Variables	,
Variables ^		4	5	6	*	۸		Spec	ific	
year	-	1	2	3	-					
count_missing_Rain sum_Rain	Add	Del	0	()	+	Clear		Gene	ral	
rainday	Data					_		Mult	ivariate	
runnuy -	options				Help	-		Use (Graph	
Ity						_		Com	bine Graphs	
Save Result into means	ain		_		_	~		These		
Comment: Code generate	ed by the dial	og, Calcula	ations					inen	nes	
Ok Reset	Close		Helo		To So	riot		View	Graph	

Fig. 18 Calculer la moyenne quotidienne d'un	
io	

Fig. 19 Menu Summarise: Une variable

Describe	Model	Climatic	To	ools	View H
One	Variable			Sumi	marise
Two	Variables	•		Grap	h
Three	e Variables			Frequ	encies
Speci	ific			Ratin	g Data
Gene	ral		33	80	15.4
Multi	ivariate		A	NA	NA
Head			13	91	14.4
Use d	orapn		33	92	14.5
Com	Combine Graphs		94	32	15.4
Then	nes		19	61	13.9
View	Graph		94	63	15.8

** Entrez la formule raintot / rainday (figure 18) – pas besoin de typer, il suffit de cliquer.

** Nommez la colonne résultante meanrain et appuyez sur Ok.

Ces données récapitulatives sont traitées dans les sections suivantes de ce guide.

** Pour l'instant, utilisez **Describe> One Variable> Summarize**, Fig. 19, pour avoir une idée initiale des colonnes produites.

** Vérifiez que vous traitez le data frame que nous cherchons, c'est-à-dire les valeurs récapitulatives annuelles.

- ** Sélectionnez les 3 colonnes comme indiqué sur la figure 20.
- ** Appuyer sur OK.

Fig. 20 One	e Variable	e Summa	rise			Fig. 2	1 Results				
One Variable Summarise			×	Output Window							
Data Frame: Guinee2_by_Station_year >> Variables	4. 1	Variable(s) tr	o Summarise:	# Code gener summary (data_nar ("raintot","	ated by the dia (object=In ne="Guine 'rainday",'	alog, One Vari statDataO ee2_by_S 'meanrain	able Summarise bject\$get_c tation_year" ")), na.rm=F	olumns_fr , col_nam ALSE)	om_data es=c	0	
Count_missing_Rain sum_Rain team.cainday reantot reantot meanrain Maximum Factor Levels Show Omit Missing Values Save Result	Add Data Options n: 7 ‡	Customis	• VYXMIHL	rai Min. 1st Qu Median Mean 3rd Qu Max. NA's	ntot : 494 :1142 :1330 :1323 :1479 :1988 :13	rai Min. 1st Qu Mediar Mean 3rd Qu Max. NA's	inday : 32.0 1.: 74.5 1 : 88.0 : 86.5 1.: 97.5 :120.0 :13	mea Min. 1st Qu Mediar Mean 3rd Qu Max. NA's	anrain :11.2 1.:13.9 1 :15.0 :15.4 1.:16.9 :20.5 :13	>	
Comment: Code genera	ated by the dialog.	One Variable Sur	nmarise								
Reset	Close	Help	To See								

Les résultats sont présentés sur la Fig. 21. Par exemple, 120 était le nombre maximum de jours de pluie dans l'année.

Ces résultats ne sont pas très utiles, car ils traitent les deux stations en même temps.

- ** Retournez au dialogue **Summarise**.
- ** Appuyez sur Data Options, voir Fig. 20.

** Sélectionnez la colonne Station, Fig. 23

** La condition est correcte pour sélectionner uniquement Kankan, donc appuyez sur **Add condition**.

- ** Appuyez ensuite sur **Return** pour revenir au sous-dialogue de la figure 22.
- ** Appuyez à nouveau sur **Return** pour revenir à la boîte de dialogue Résumer.
- ** Appuyez sur **OK** pour obtenir les résultats pour Kankan seulement.

** Répétez les Data Options, pour sélectionner Koundara in Fig. 23.

** Retournez au dialogue principal, et appuyez sur **Back** ensuite OK pour obtenir les résultats provenant uniquement de Koundara, see Fig. 24

	Output Wind	ow
raintet	rainday	meanrain
Min · 49	Min · 32	0 Min +11 3
1et On +1310	1 1et Out • 90	0 1et 01 +13 0
Median +140	Madian : 96	0 Madian +14 9
Mean :145	2 Mean : 96.	3 Mean :15.1
3rd Ou. :163	5 3rd Ou. :104.	2 3rd Ou. : 15.7
Max. :1988	Max. :120.	0 Max. :20.5
NA's :4	NA's :4	NA's :4
ita_name= Gui iata Options subdialo statDataObject ita_name="Gui	nee2_by_Station_yea g: Set the current filter \$set_current_filter(filt inee2_by_Station_yea a dialog_Ope Variable S	ar", filter_name="Filte er_name="Filter2", ar")
Data Options subdialo statDataObject ata_name="Gui Code generated by the ummary(object= lata_name="Gui raintot", "rainday	nee2_by_Station_yea g: Set the current_filter \$set_current_filter(filt nee2_by_Station_yea e dialog, One Variable Summa =InstatDataObject\$ge uinee2_by_Station_yea y", "meanrain")), na.rm	ar", filter_name="Filte er_name="Filter2", ar") t_columns_from_data ar", col_names=c =FALSE)
Data Options subdialo instatDataObject ata_name="Gui Code generated by the ummary(object= data_name="Gui raintot", "rainday raintot	nee2_by_Station_yea g: Set the current_filter \$set_current_filter(filt nee2_by_Station_yea dialog, One Variable Summai -InstatDataObject\$ge iinee2_by_Station_yea y", "meanrain")), na.rm rainday	ar", filter_name="Filte er_name="Filter2", ar") fise t_columns_from_data ar", col_names=c a=FALSE) meanrain
Data Options subdialo istatDataObject ata_name="Gui Code generated by the ummary(Object= data_name="Gu raintot", "rainday raintot Min. : 733	ree2_by_Station_yea g: Set the current filter \$set_current_filter(filt inee2_by_Station_yea dialog, One Varable Summa =InstatDataObject\$ge uinee2_by_Station_yea y","meanrain")), na.m rainday 2 Min. :51.0	ar", filter_name="Filte er_name="Filter2", ar") filter2", t_columns_from_data ar", col_names=c ==FALSE) meanrain Min. :11.2
Data Options subdialo statDataObject ata_name="Gui Dode generated by the ummary(Object= lata_name="Gu raintot","rainda) raintot Min. : 733 1st Qu.: 980	ree2_by_Station_yea g: Set the current filter \$set_current_filter(filt nee2_by_Station_yea e dialog, One Varable Summa =InstatDataObject\$ge uinee2_by_Station_yea r", "meanrain")), na.rm rainday 2 Min. :51.0 6 1st_Qu.:64.0	ar", filter_name="Filte er_name="Filter2", ar") "columns_from_data ear", col_names=c ==FALSE) meanrain Min. :11.2 lst_Qu.:14.0
Data Options subdialo IstatDataObject ata_name="Gui Code generated by the ummary(object= lata_name="Gu raintot", "rainday raintot Min. : 732 Ist Qu.: 980 Median :1107	nee2_by_Station_yea g: Set the current filter \$set_current_filter(filt nee2_by_Station_yea a dialog. One Variable Summa =InstatDataObject\$ge uinee2_by_Station_yea y", "meanrain")), na.rm rainday 2 Min. :51.0 6 1 st_Qu.: 64.0 7 Median : 70.0	ar", filter_name="Filte er_name="Filter2", ar") t_columns_from_data ar", col_names=c u=FALSE) meanrain Min. :11.2 lst Qu.:14.0 Median :15.3
Jai _ name= Gui Data Options subsidio statDataObject ala_name="Gui mmary(object= alai_name="Gui raintot","rainday raintot din. : 733 List Qu.: 936 Median :1100 Mean :1110	nee2_by_Station_yea g: Set the current filter \$set_current_filter(filt nee2_by_Station_yea a dialog. One Variable Summa =InstatDataObject\$ge innee2_by_Station_yea y", "meanrain")), na.rm rainday 2 Min. 51.0 6 1st_Qu.:64.0 7 Median :70.5	ar", filter_name="Filte er_name="Filter2", ar") t_columns_from_data ar", col_names=c n=FALSE) meanrain Min. :11.2 lst Qu.:14.0 Median :15.3 Mean :15.8
Data Options subdialo istatDataObject ata_name="Gui Code generated by the ummary(object= lata_name="Gui raintot", "rainday raintot Min. : 73: 1st qu.: 984 Median :1110 Brean :1110	ree2_by_Station_yes g: Set the current filter \$set_current_filter(filt inee2_by_Station_yes a dialog_One Variable Summa =InstatDataObject\$ge uinee2_by_Station_yes y", "meanrain")), na.rm rainday 2 Min. :51.0 6 1st_Qu.: 64.0 7 Median :70.5 0 3rd_Qu.: 77.5	ar", filter_name="Filte er_name="Filter2", ar") ise t_columns_from_data ear", col_names=c m=FALSE) meanrain Min. :11.2 lst Qu.:14.0 Median :15.8 3rd Qu.:17.5
Data Options subdialo nstatDataObject lata_name="Gui Code generated by the ummary(object= data_name="Gui 'raintot", "rainday raintot Min. : 733 lst Qu.: 984 Median :1100 Mean :11240 Max. : 1599	ree2_by_Station_yea g: Set the current filter \$set_current_filter(filt nee2_by_Station_yea a dialog, One Varable Summas -InstatDataObject\$ge uinee2_by_Station_yea y", "meanrain")), na.rm rainday 2 Min. :51.0 6 1st_Qu.:64.0 7 Median :70.5 0 3rd_Qu.:77.5 9 Max. :85.0	ar", filter_name="Filte er_name="Filter2", ar") filter2", ar", col_names=c meanrain Min. :11.2 lst Qu.:14.0 Median :15.3 Mean :15.3 Mean :15.8 3rd Qu.:17.5 Max. :20.5

Recapitulatif

Dans cette section, vous avez produit des résumés annuels a partir de données quotidiennes. Il s'agissait de totaux pluviométriques, mais cela aurait pu être quelques chose d'autre, telles que les moyennes de température ou les extrêmes. Ces résumés ont été placés dans un 2^e data frame et ont ensuite été analysés davantage. La calculatrice a été utilisée pour produire d'autres colonnes (variables) également au niveau annuel. Les analyses étaient pour les deux stations combinées. Les installations de filtrage permettent alors d'obtenir des résultats pour des stations individuelles.

Le début et la fin de la saison des pluies

Si vous avez complété les analyses ci-dessus, un filtre est toujours en cours de fonctionnement, Fig. 1, donc seules les données de Koundara sont visibles. Sur la figure 1, la première ligne est en rouge, ce qui confirme l'utilisation d'un filtre.

** Faites un **clic droit** avec le curseur dans le champ de nom, Fig. 1.

** Prendre la dernière option, **Remove the Last Filter** (pour supprimer le filtre actuel). Début des pluies

** Choisissez Climatique> Préparer> Début des pluies, Fig. 2.

C'est l'élément de menu juste en dessous des résumés climatiques utilisés dans la dernière section

Start of the rains

** Selectionnez *Climatic* > *Prepare* > *Start of the Rains*, Fig. 2.

C'est l'élément de menu juste en dessous des Climatic Summaries utilisees recemment.

** Dans la Fig. 3, vérifiez que le fichier Guinea2 de données quotidiennes est utilisé.

Notez que les 5 champs de la Station au jour de l'année ont été automatiquement remplis.

** Cliquez sur Day Range, Fig. 3 pour afficher le sous-dialogue, Fig. 4.

** Dans la figure 4, modifiez la date **From** : choisissez **15 avril**. Le cultures sont rarement plantées plus tôt que ca.

** Changer la date **To**, choisissez **le 31 juillet**. Nous supposons que la plupart des agriculteurs aurons plante d'ici-là.

** Appuyez sur Return.

				precoce	
Start of Rains				Select Day of Year Range	
Start of Rains Data Frame: Guinee2 Year Variables year Threshold: O Conditions for S Conditions for S Total Rainfi Dy Spel Dy Period	Add Data Options 185 © Day F Start of Rains Tall Over Rainy Days	Station: Station Date: Date Rain Column: Rain Year: year: Joy of Year: doy_366 Range "doy_366 >= 106 & doy_ Days: 3 Quark Calculate Rainfall	366 <= 213" Value by: ● Amount 20 ○ Percentile	Select Day of Year Range	To Fixed Day O Variable 31 July etum Help
New Column Nar	me: startdry				
Comment:	Code generated by the dia	log, Start of Hains			
Ok	Reset Close	Help To Script			

Fig. 3 Le debut des pluie

** Dans la Fig. 3, cliquez sur la case **Total Rainfall** et modifiez le nombre de jours **de 2 à 3**. ** Appuyer sur **OK**.

Cela ajoute une autre colonne, intitulée start, dans le data frame avec les données annuelles.

Cela représente une potentielle date de début des pluies chaque année.

Maintenant, préparons une deuxième définition qui représentera également une période de sécheresse.

** Retournez au dialogue précèdent.

** Cliquez sur la case à cocher pour ajouter une « période seche », Fig. 5

** Modifier le spell length (longueur de la periode seche) à 7 jours et la durée de cette période à 21 jours.

** Nommez la colonne résultante s « startdry », Fig. 5.

** Appuyer sur **OK**.

Start of Rains			Calculations						
Data Frame:					_				
Guinee2	~	Station:	Expression	startdry-start					~
Versite		Station				Basic			Y
rear variables		Date:	Data Frame:			Basic			
year	Add	Date	Guinee2 by S	tation year V		7	8	9	1
		Rain Column:					-	-	1
		rain	Variables	^		4	5	6	
	Data	Year:	sum_Rainday		-	1	2	3	-
L	options		raintot		Add	Del	0	0	1.
		doy 366	rainday			Der	0	0	
			meanrain						
Threshold: 0.85 🚔	Day Rang	ge "doy_366 >= 106 & doy_366 <= 213"	startdry	~	Data			-	
Conditions for Start of P	laine		contrary		optione				Help
Tetal Daiofall			Try						
	Over Day	rs: 5 Calculate Rainfall Value by:			_				
			Save Res	sult into startdi	ff				
Number of Rainy Da	ays				11 4 61				
			Comment:	Lode generat	ed by the dialo	og, Calcul	ations		
	Maximum Dry Day	rs: / 🚖 Overall Interval Length: 21	Ok	Reset	Close		Help		To Scri
Dry Period									
New Column Name: sta	artdry								

Fig. F. Aleuter une condition de nérie de cèche

Fig. C. Difference between start dates

Calculez maintenant la différence entre ces deux colonnes

** Utilisez **Prépare> Column: Calculate> Calculations** pour obtenir la calculatrice R-Instat

- ** Sur la Fig. 6, l'expression est startdry start.
- ** Appelez cette nouvelle colonne startdiff.
- ** Appuyer sur **OK**.

Cela ajoute une colonne supplémentaire aux données. Nous interprétons le résultat que lorsque la colonne startdiff est nulle, c'est-à-dire que la condition de la periode seche n'a pas d'effet, la première date de début est correcte. Dans le cas contraire, il y a eu une période seche de plus de 7 jours au cours des 3 premières semaines (21 jours) après la semis, et il a donc fallu replanter.

La fin de la saison des pluies

** Utilisez *Climatic* > *Prepare* > *End of the Rains*, Fig. 7.

** Sur la figure 8. confirmez que le data frame est bien Guinea2. c'est-à-dire les données quotidiennes. Les contrôles sur le côté droit ont été alimentes automatiquement.

- ** Appuyez sur le bouton Day Range pour lancer le sous-dialogue.
- ** Changez la date la plus proche au 1er septembre. Appuyez sur Return.
- ** Cliquez sur la case End of Season. Tappez une capacité de 100mm.
- ** Appuyez sur **OK**

Dates Define Climatic Data Check Data					
Define Climatic Data Check Data					Station
Check Data	rain	start startdov	Rain Variables		Date:
Chick Duco		start startury	Rain	I and	Date
Prenare		Transform		Add	Year.
Cr. I		mansionn			year
Climdex	_	Climatic Summaries		Data	Day of Year:
Describe		Start of the Rains		Options	doy_366
PICSA		Spells			Rain Column:
CM SAF		Extremes			Rain
Model	•	End of Rains	Uay Range (do	y_366 >≖ 245) & d	loy_366 <= 366"
Seasonal Forecast Support		Evapotranspiration	End of Season	Capacity: 100 vaporation: 5	Water Balance <= 0.5
			End of Rains		

Nous utilisons un modèle d'équilibre hydrique simplifie pour calculer la date de la fin de la saison.

Maintenant il s'agit de soustraire la date de début de la date de fin, pour obtenir la longueur de la saison.

- ** Utilisez Prepare> Column: Calculate> Calculations.
- ** Sur la figure 9, l'expression est comme suit : end_season startdry.
- ** Appelez la nouvelle colonne « length » (duree).

Fig. 7 Sélectionner de la fin de la saison

** Appuyer sur OK.

Fig. 9 Ca	lculer lo	a dur	ee a	le la	ı sai	son	Fig. 10 Menu p	peri	ode seche
Calculations						×	Climatic Tools View Help File	•	
Expression end_seaso	on-startdry		~			R			S C 🥑
		Basic			~	Show Arguments	Dates		
Data Frame:		Basic			-		Define Climatic Data		F and season length
Guinee2_by_Station_year ~	-	7	8	9	1	4 .	Check Data		210 170
Variables	-	4	5	6	*	~	Prepare		Transform
rainday		1	2	3	-	0	Climdex		Climatic Summaries
start	Add	Del	0	0	+	Clear	Describe		Start of the Rains
startdiff	Data						PICSA		Spells
end_season v	Options				Help		CM SAF		Extremes
Try							Model		End of Rains
Save Result into	th				_	~	Seasonal Forecast Support		Evapotranspiration
Comment: Code gener	rated by the dial	og, Calcula	ations						
Ok Reset	Close		Help		To Scr	ipt			

Duree des periodes seches

Calculez maintenant la durée du plus long épisode de sécheresse de la saison. Cela pourrait être pour un nombre de mois fixe, par ex. Juillet à septembre. Ici, nous calculons le plus long épisode de sècheresse entre les dates de début et de fin de la saison, qui elles même changent chaque année.

** Selectionnez *Climatic* > *Prepare* > *Spells*, Fig. 10.

Fig. 8 La fin de la saison

Fig 11	Dure	e de la j	periode se	eche	Fig. 12 C	hoisir la g	amme de jour
Spells				×	Select Day of Year Range		
Data Frame: Guinee2	~		Station: Station		Data Frame: Guinee2_by_Station_year ~		
Variables dov 366	^		Date: Date		Variables ^		
Rain	-1	Add	Year:		meanrain start	Add	
Tmin BelHum		Data	Day of Year:		startdry startdiff	Data	
Rainday	*	Options	doy_366 Element:		end_season 🗸	Options	
Options Day Range	"doy	_366 >= startdr	Rain y & doy_366 <= en	d_season"	From Fixed Day Va	ariable Day	To O Fixed Day Variable Day
Condition: 0	Be	etween 🗸	0.85		startdry	3	end_season
Conditional on R	ain etc at S	tart of			·		Astum Halo
New Column Name:	spells					r	nch .
Comment: Co	de generat	ed by the dialog	g, Spells				
Ok	Reset	Close	Help	To Script			

- ** Dans le dialogue, vérifiez que les données quotidiennes Guinée2 sont utilisées.
- ** Ajouter la colonne Rain comme élément, Fig. 11.
- ** Appuyez sur le bouton Day Range, Fig. 11.
- ** Dans le sous-dialogue, sur From cliquez sur Variable Day, Fig. 12.
- ** Vérifiez que cette trame de données contient les **summary data**, c'est-à-dire Guinea2_by_Station_year, Fig. 12.
- ** Choisissez startdry comme colonne de départ.

** Dans la section **To**, utilisez également le paramètre **Variable Day** et sélectionnez la colonne appelée **end_season**.

- ** Appuyez sur **Return**.
- ** Appuyer sur **OK**

Fig. 13 The summary data

							Data	View							
	Station (f)	year	count_mis	sum_Rain	sum_Rainday	raintot	rainday	meanrain	start	startdry	startdiff	end_season	length	spells	1
1	Kankan	1950	0	1376	93	1376	93	14.8	132	146	14	319	173	7	
2	Kankan	1951	0	1439	107	1439	107	13.4	109	109	0	335	226	11	
3	Kankan	1952	0	1458	110	1458	110	13.3	127	127	0	315	188	7	
4	Kankan	1953	0	1726	109	1726	109	15.8	118	159	41	321	162	8	
5	Kankan	1954	0	1808	116	1808	116	15.6	128	128	0	342	214	13	
6	Kankan	1955	0	1795	120	1795	120	15.0	115	138	23	331	193	11	
7	Kankan	1956	0	1300	96	1300	96	13.5	150	150	0	308	158	11	
8	Kankan	1957	0	1988	118	1988	118	16.8	108	108	0	330	222	11	
9	Kankan	1958	31	1216	85	NA	NA	NA	106	130	24	293	163	6	
10	Kankan	1959	0	1762	100	1762	100	17.6	124	138	14	326	188	13	
11	Kankan	1960	0	1899	117	1899	117	16.2	118	118	0	324	206	10	
12	Kankan	1961	0	1356	97	1356	97	14.0	113	113	0	309	196	12	
13	Kankan	1962	0	1870	107	1870	107	17.5	107	107	0	320	213	7	
14	Kankan	1963	0	1599	102	1599	102	15.7	116	162	46	319	157	12	
15	Kankan	1964	0	1684	111	1684	111	15.2	126	126	0	317	191	10	
16	Kankan	1965	0	1403	105	1403	105	13.4	137	137	0	320	183	16	
17	Kankan	1966	0 Station um	1469	110	1469	110	13.4	137	137	0	322	185	10	•

Showing 116 of 116 rows | Showing 14 of 14 columns

La figure 13 montre qu'il y a maintenant beaucoup de colonnes de données que l'on pourrait examiner davantage. Par exemple, à Kankan en 1950:

• Les précipitations totales, de mars à octobre, ont été de 1376 mm

- Il y a eu 93 jours de pluie et il n'y avait pas de valeurs manquantes dans cette période
- Il y a eu un faux départ qui a eu lieu le jour no. 132, c'est-à-dire le 11 mai.
- Le démarrage réussi a eu lieu 2 semaines plus tard, c'est-à-dire qu'il a fallu replanter.
- La fin de la saison a eu lieu le jour no. 319, c'est-à-dire le 14 novembre
- D'où une durée de la saison de 173 jours, soit près de 6 mois.
- La plus longue période de sécheresse de la saison a été de 7 jours.
- L'analyse complémentaire commence dans la section suivante.

Pour compléter cette section, enregistrez le fichier comme indique ci dessous

	Fig. 14 Enre	gistrez	le fichier			Fig. 1	15 Choisis	sez un n	om	
File	Edit Prepare Desc	ribe Moo	del Climatic	Tools Vi	Save Data As					×
	New Data Frame Open From File Open From Library	Ctrl+N Ctrl+O			Save Data To:	(SSD)/Roger/	CRAF/Benin/Dat	a/Guinee/Guine	a2summary.RDS	Browse
	Import from ODK		ain sum_Raind	ay rainto						
	Import from CSDRO		93	1376	Comment:	Code generate	d by the dialog, S	Save Data As		
	import from CSPRO		107	1439	Ok	Reset	Close	Help	To Script	
	Import from Databases		110	1458						P12 /
	Open NetCDF		109	1726						
	Convert		116	1808						
		1000	120	1795						
	Save	Ctrl+S	96	1300						
	Save As		Save Date	ta As						
	Export		Save Ou	tput Windo						
	Print	Ctrl+P	Save Lo	As						
	Print Preview		Save Scr	ipt Window						
	Close Data File		97	1356						
			107	1870						

** Utilisez *File > Save As > Save Data As*, Fig. 14.

** Appuyez sur **Browse**, Fig. 15. Dans la boîte de dialogue suivante, choisissez un répertoire et un nom de fichier appropriés, puis cliquez sur **Save.**

** De retour à la Fig. 15. Cliquez sur **OK**.

Vous pouvez également utiliser **File> Export** si vous le souhaitez. Mais il y a une grande différence entre le fichier exporté et le fichier enregistré. L'exportation est pour un seul data frame, tandis que l'enregistrement (Save As) est pour les données quotidiennes et annuelles en même temps, ce qui permet de poursuivre l'analyse ultérieurement.

PREPARATION DES DONNEES CLIMATIQUES POUR DES ANALYSES AVEC R-INSTAT

1) Introduction

R-instat est un logiciel conçu pour la statistique générale. Toutes les opérations y sont effectuées a par du langage statistique R. En plus, R-instat comporte un menu spécial 'climatique'.

Nous prévoyons à l'avenir, à partir du menu 'climatique' faciliter l'analyse des données climatiques de n'importe quelle échelle, comme par exemple celles d'une station automatique. Les méthodes actuelles sont particulièrement conçues pour l'analyse des données journalières. Ce guide utilise des données journalières de deux (02) stations de la Guinée (Conakry) comportant chacun quatre (04) paramètres. Ces données sont dans la bibliothèque R-Instat, par conséquent les exemples dans ce guide peuvent être suivis par les utilisateurs qui souhaitent le faire.

2) Remerciements

Nous exprimons nos remerciements et notre gratitude au Service de la Météorologie Nationale de la Guinée de nous avoir permis d'utiliser leurs données dans la préparation de ce guide, et aussi de permettre que leurs données soient ajoutées à la bibliothèque de R-Instat.

3) Mise en forme des données

Nous allons tout d'abord ouvrir les données dans leur format original. Il s'agit de deux (02) fichiers Excel, et donc nous commençons par présenter les données dans Excel, plutôt que dans R-Instat, (voir Fig. 1).

4	A	T.	В	C	D	E	F	0
1		T	MIN jo	urnalièr	e			
2	Eg gh id	Eg	el abbre	evi: Year	Month	Day	Value	
3	17KKAN1	S TM	IIN	1950	01	01	13	
4	17KKAN1	S TM	IIN	1950	01	02	15.6	
5	17KKAN1	S TM	IIN	1950	01	03	18	
6	17KKAN1	S TM	IIN	1950	01	04	19.7	
7	17KKAN1	S TM	IIN	1950	01	05	14	
8	17KKAN1	S TM	IIN	1950	01	06	12.4	
9	17KKAN1	S TM	IIN	1950	01	07	11.9	
10	17KKAN1	S TM	IIN	1950	01	08	18.4	
11	17KKAN1	S TM	IIN	1950	01	09	13.2	
		Tmin	Tmax	Rain	RelHum	Ð		

Fig. 1 Données d'une station sous Excel

Les données sont sous le "format" adéquat pour R-Instat, c'est-à-dire une ligne de données pour chaque jour. Les données de cette station commencent en 1950 et se poursuivent jusqu'en 2016 ou 2017.

Les données ne sont pas toujours sous ce "format" adéquat. L'Annexe 1 présente comment transformer les données au format r-instat.

Le fichier Excel de la Figure 1 comporte quatre (04) feuilles, soit un paramètre par feuille. Si l'analyse portait uniquement sur un seul paramètre, et pour cette seule station, ces données pouvaient être importées dans R-Instat comme indiqué ci-dessous, et continuer l'analyse à partir de la section 4. Cependant, fusionner ces 4 feuilles en seul fichier sera bénéfique pour la réalisation de plusieurs analyses. Il est également possible de les combiner avec les données de la 2^e station. C'est ce que ferons.

Notre objectif est de combiner les quatre paramètres pour les deux stations dans une seule et même feuille de données.

** Ouvrir R-instat

** Utiliser le menu File > Open from library pour ouvrir le fichier, voir Fig. 2. (Nous utilisons ici les données contenues dans la bibliothèque de r-instat. Pour vos propre données, utilisez plutôt le menu File > Open).

File	Edit Prepare	Describe					
	New Data Frame	Ctrl+N					
	Open From File	Ctrl+O					
	Open From Library						
	Import from ODK						
	Import from CSPRO						
	Import from Databases						
	Open NetCDF						
	Convert						
	Save	Ctrl+S					
	Save As						
	Export						
	Print	Ctrl+P					
	Print Preview						
	Close Data File						

Fig. 3 Charger les données à partir de collection de Instat

L	Load from R	Load from In	stat collection
		Browse	
			Hels
Comment:	Code generated by th	e dialog, Open Da	taset from Library

- ** Cliquez sur Load from the Instat collection, Fig. 3
- ** Cliquez sur Browse, ensuite choisissez Climatic et Guinée

mport Dataset.		uc ui	alogu	e resi	litant	te	
Image: filmed filmed Library * Climatic Image: filmed filmed Image: filmed filmed filmed Organize * New folder Image: filmed film							
Image: Static of Library > Climatic Image: Static of Library >	_						
Organize New folder Desktop Name Desktop Name Desktop Statilie Doornloads Statilie Doornloads Statilie Diodemands 13/05/2018/2048 Diodemands 13/05/2018/2048 Diodemands 13/05/2018/2048 Benin Oxdemaads Guinee 13/05/2018/2048 Benin Guinee Guinee Statilie Statilie 13/05/2018/2048 Benin Guinee Guinee Statilie Statilie 13/05/2018/2048 Benin Guinee Guinee Statilie Statilie 13/05/2018/2048 Main Stankan Stankan Stankan Samaru56.RDS 13/08/2018/2048 Mainsurf Simaru56.RDS Statilie 13/03/2018/2048 Witemys/Rohno 13/03/2018/2048 Witemys/Rohno 13/03/2018/2048 Witemys/Rohno 13/03/2018/2048 Witemys/Rohno 13/03/2018/2048 Mainnum Rows To Import Mainnum Rows To Import Witemys/Rohno 13/03/2018/2048 Witemys/Rohno 13/03/2018/2048 W							
Dektop Name Date modified Type Downloads Statilie 13/03/2018/2049 File folde Documents Chematics 13/03/2018/2049 Rossell Pictures Chematics 13/03/2018/2049 Rossell Guinee Chematics 13/03/2018/2049 Rossell Statilie 13/03/2018/2049 Rossell Rossell Simaru56.RDS 13/03/2018/2049 Rossell Rossell Guinee Witkenya Ration 13/03/2018/2049 Microsoft This PC Witkenya Ration 13/03/2018/2049 Microsoft with This PC Witkenya Ration 13/03/2018/2049							
Downloads Documents Satellite 13/03/2018 2054 File folde Documents Climatic guide_dstasets 13/03/2018 2054 Kicrosoft Documents Glimatic guide_dstasets 13/03/2018 2054 Rosoft Glimatic guide_dstasets Intin Trailing White Space Rosoft Skip: Glimatic guide_dstaset Rosoft Skip: Glimatic guide_dstaset Rosoft Skip: Rosoft Skip: Glimatic guide_dstaset Rosoft Skip: Glimatic guide_dstaset Rosoft Skip: Glimatic guide_dstaset Rosoft Skip: Rosoft Skip: Glimatic guide_dstaset Rosoft Skip: Rosoft Skip: Rosoft Skip: Glimatic guide_dstaset Rosoft Skip:							
File name Kankan All Data files Cancel New Open Cancel New York Cancel New Yor	Data F	rame Preview X_1 Eg gh id 17KKAN	TMIN.journ Eg el abbi	ali X_2 revYear 1950	Line X_3 Month 01	s to Preview: X_4 Day 01	10 ≑ ∨ε 13
	4 5 6 7	17KKAN 17KKAN 17KKAN 17KKAN	AIS TMIN AIS TMIN AIS TMIN AIS TMIN	1950 1950 1950 1950	01 01 01 01 01	03 04 05 06	18 19 14 12 ×
	<					-	>
Comment: Code generated by the dialo	log, Import I	Dataset				Refresh	Preview

** Choisissez le fichier *Kankan.xlsx*, et ensuite cliquez sur *Open*, Fig. 4.

** Examinez la boite de dialogue Fig. 5. NE PAS CLIQUER SUR OK pour l'instant. La feuille Excel n'est pas encore prête pour être importée.

En examinant la feuille Excel de plus près, on constate que la première ligne est un en-tête, et les noms des variables sont dans la ligne 2 de la feuille.

** Modifier *Row to skip* de *0* a *1*, Fig. 5.

** Remplacer dans la section **New Data Frame Name** 'Kankan' par <u>Tmin</u>. Le résultat est semblable à la Fig. 6.

Fig. 7 Les données dans R-Instat

** Cliquez sur OK pour importer les données dans R-instat, Fig.7.

Le bas de la figure 7 indique qu'il y a 22 521 jours (lignes de données), dont seulement 1000 sont représentées. La grille dans R-Instat est juste une fenêtre montrant une partie des données. L'ensemble des données est stocké dans R.

** Cliquez sur le bouton Last Dialog, Fig.7. Cela vous ramène à la Figure 6.

** Changez de feuille dans la section Select Sheet,

** Choisissez Tmax et cliquez sur OK.

Vous avez maintenant deux (02) feuilles de données ouvertes dans R-instat. La feuille de Tmax comporte 22215 lignes de données.

** Répétez le même processus 2 fois pour importer les donner *Rain* et *RelHum*. Vous avez maintenant 4 feuilles de données dans r-instat, Fig. 8.

Il y a 24080 lignes de données sur la pluie et 11045 lignes pour l'humidité relative.

Fig. 8 Les 4 feuilles de données dans R-Instat

			Data \	/iew			
	Eg.gh.id	Eg.el.ab	Year (c)	Month (c)	Day (c)	Value	-
1	17KKAN1	UR	1981	01	01	37	
2	17KKAN1	UR	1981	01	02	28	
3	17KKAN1	UR	1981	01	03	32	
4	17KKAN1	UR	1981	01	04	34	
5	17KKAN1	UR	1981	01	05	40	
6	17KKAN1	UR	1981	01	06	37	
7	17KKAN1	UR	1981	01	07	35	
8	17KKAN1	UR	1981	01	08	38	
9	17KKAN1	UR	1981	01	09	33	
10	17KKAN1	UR	1981	01	10	33	4
4.1	Tmin Tmax	Rain F	RelHum	:	< houring	P of C	

Fig. 9 Le menu Prepare

Describe	Model	Climat	tic Tools	View
a Frame	*			N
umn: Calcu umn: Gener umn: Facto	ilate + rate + r	Data) Day (01 02	c) View 37 28	
umn: Text umn: Date	;	03 04	32 34	
umn: Resha s and Links	ape +	G	olumn Summ eneral Summ	naries aries
a Object bjects	*	St	ack nstack	
1981	01	M	lerge	
1981	01	A	ppend Data F	rames
1981	01	Su	ubset	
1981	01	Ra	andom Subse	t
1981	01	Tr	anspose	
	Describe a Frame cck Data umn: Calcu umn: Gener umn: Facto umn: Text umn: Date umn: Resha s and Links a Object bjects 1981 1981 1981 1981	Describe Model a Frame > a Frame > ck Data > umm: Calculate > umm: Generate > umm: Factor > umm: Text > umm: Reshape > s and Links > a Object > bjects > 1981 01 1981 01 1981 01 1981 01 1981 01 1981 01	Describe Model Climat a Frame , , a Frame , , urmn: Calculate , , urmn: Calculate , , urmn: Generate , , urmn: Factor , , urmn: Text , , urmn: Reshape , , s and Links , , a Object , , bjects , , 1981 01 , 1981 01 , 1981 01 , 1981 01 , 1981 01 , 1981 01 , 1981 01 , 1981 01 ,	Describe Model Climatic Tools a Frame , , , , ck Data , , , , umn: Calculate , , , , umn: Calculate , , , , umn: Generate , , , , umn: Factor , , , , umn: Text , , , , umn: Reshape , , , , umn: Reshape , , , , s and Links , , , , ig81 01 , , , 1981 01 , , , 1981 01 , , , 1981 01 , , , 1981 01 , , , 1981 01 , , , 1981 01 , , , 1981 01 , , , 1981 01 , , , 1981 01 , , , ,

La tâche suivante consiste à fusionner les données des différentes feuilles dans une seule feuille de données. Ceci est fait en 2 étapes.

Étant donné que nous sommes toujours dans la préparation des données, nous utiliserons le menu Prepare, Fig. 9.

** Dans le menu Prepare, choisir Column: Reshape, ensuite Append Data Frame, Fig. 9.

Fia 10 La hoite de dialoque Annend

Fig	. 10 La boite	e de dialogue Ap	opend		Fig. 11	Ajout te	rminé	
ppend Data I	Frames		×	Append Data F	rames			
Data Frames:		Selected Data	Frames:	Data Frames:			Selected Data	Frames:
Data Frames				Data Frames			data_name	s
Tmin				Tmin			Tmin	
Tmax	Add Selecter	d		Tmax		Add	Ттах	
Rain	Select All			Rain			Rain	
RelHum	Clear Selecti	on		RelHum		and the second	RelHum	
	Add All					Options-		
Include ID	Column ID Colum	n Name: id		Include ID 0	Column ID C	olumn Name:	Bement	
New Data Fra	me Name: Append	1	1	New Data Fram	ne Name: Ka	nkan_long		
Comment:	Code generated by	y the dialog, Append Data Fra	ames	Comment:	Code generat	ed by the dialog	, Append Data Fra	mes
OK.	Reset	Close Help	To script	Ok	Reset	Close	Help	To Script

Nous voulons sélectionner tous les paramètres (feuilles de données).

- ** Faites un clic droit dans le sélecteur de données, Fig. 10, et cliquez sur Add All.
- ** Changez ID Column Name en Element, puis Data Frame Name en Kankan_long. Fig. 11.
- ** Cliquez sur OK.

Cela a produit une nouvelle feuille de données contenant 79 861 lignes.

La première colonne, appelée Elément est type texte (caractère). Elle doit être convertie en une colonne de type catégorique, ce qui correspond au type Facteur dans R.

** Cliquez avec le bouton droit sur le nom *Element*. On a le menu déroulant la figure 12.

** Choisir Convert to Factor. Un (f) devrait apparaitre après le nom de la colonne.

-			11g. 13	Unstack	
	Element.(c)	Ea ab.id.(c) Ea el abbrevi Year (c)	Unstack Columns		
1	Tmin	Rename Column	onstack columns		
2	Tmin	Duplicate Column	Data Frame:		
3	Tmin	Reorder Column(s)	Kankan_long 🗸 🗸		
4	Tmin	Delete Column			Factor to Unstack by:
5	Tmin	Convert to Factor	Variables		Element
6	Tmin	Convert to Ordered Easter	Eg.gh.id		Column to Unstack:
7	Tmin	Convert to Ordered Factor	Eg.el.abbreviation	Add	Value
8	Tmin	Convert to Character	Year		ID Columns:
9	Tmin	Convert to Logical	Day	DA	Kaokan Jong
10	Tmin	Convert to Numeric	Value 🗸	Options	Voor
11	Tmin	Levels/Labels	1		Month
12	Tmin	Foregoing the Marce			Day
13	Tmin	Freeze to Here			Suy
14	Tmin	Untreeze	Drop Missing Combinations		
15	Tmin	Sort	New Data Frame Name: Kar	nkan	
16	Tmin	Filter			
17	Tmin	Remove Current Filter	Code generate	ed by the dialog. I	Unstack Columns
	Showing 1	000 of 79861 rows Showing 7	Ok Reset	Close	Help To Script

** Allez a *Prepare > Column: Reshape > Unstack*, Fig. 9.

** Terminer le dialogue **Unstack** comme indiqué sur la figure 13.

** La case *Factor to Unstack* contient la colonne **Element**, tandis que *Column to Unstack* contient Value.

** Il y a 3 *ID Columns* (Identifiants des colonnes) nommés, *Year, Month, Day*, et le nom de la nouvelle feuille (*New Data Frame Name*) est Kankan.

** Cliquez sur OK.

Fig. 14 Clic droit sur la feuille de données	

		Date	a view	
nth (c)	Day (c)	Rain	RelHum	Tmax
1	01	0.0	NA	35.8
2	02	0.0	NA	34.8
3	03	0.0	NA	34.7
4	04	0.0	NA	33.9
5	05	0.0	NA	33.8
6	06	0.0	NA	31.2
7	07	0.0	NA	33.0
8	08	0.0	NA	34.4
Rain Re	Hum Kankan	long Kanka 24407 ro	W Repa	24.2 te
ankan			Hide Unhi Copy Reor	de / der
			View	Data Fram

Fig. 15 Les	données	de Kankan	dans la	vue	de
		R			

	Year	Month	Day	Rain	RelHum	Tmax	Tmin
21781	2010	01	20	0.0	36	35.4	15.3
21782	2010	01	21	0.0	37	36.0	14.2
21783	2010	01	22	0.0	22	36.3	15.5
21784	2010	01	23	0.0	31	36.5	15.1
21785	2010	01	24	0.0	34	36.1	15.6
21786	2010	01	25	0.0	31	36.4	16.5
21787	2010	01	26	0.0	31	36.0	19.5
21788	2010	01	27	0.0	33	36.1	16.7
21789	2010	01	28	0.0	38	36.0	21.0
21790	2010	01	29	0.0	34	37.4	20.4
21791	2010	01	30	0.0	33	38.4	16.7
21792	2010	01	31	0.0	33	38.0	15.4
21793	2010	02	01	0.0	30	38.0	16.0
21794	2010	02	02	0.0	26	38.0	11.0
21795	2010	02	03	0.0	30	38.5	15.5
21796	2010	02	04	0.0	30	39.0	16.9
21797	2010	02	05	0.0	44	38.1	18.0
21798	2010	02	06	0.0	24	37.8	17.4
21799	2010	02	07	0.0	27	36.8	17.1

La grille, ou encore feuille de r-instat est une fenêtre montrant juste une partie des données.

- ** Faites un clic droit sur le nom Kankan, ensuite cliquez sur View Data Frame. Fig. 14.
- ** Faites défiler les données dans la vue de R, pour voir les données complètes. Fig. 15.

Nous pouvons fermer les autres feuilles de données, à l'exception de celle nommée Kankan. Celle elle que l'on utilisera pour la suite de notre analyse.

- ** Sélectionnez la feuille Kankan_long
- ** Faites un clic droit au bas de la fenêtre (Fig. 14), et cliquez sur Delete, Fig. 16.
- ** Ajouter les autres feuilles à supprimer, sauf bien sûr celle de Kankan, Fig. 16.

Data Frames		Kankan long	^
Tmin		Tmin	
Tmax	Add	Tmax	
Rain		Rain	
RelHum		RelHum	
Kankan_long	Bara		
Kankan	Qb5ons		

(Clim	atic To	ols \	/iew	Help	1		
₽				N		R		
		De	lete Dat	a Fram	es			
n	R	Un	stack C	olumn	5			
	NA	Ap	Append Data Frames					
	NA	Im	nort Da	taset				
	NA	0	Det	uset for				
	NA	OF	Open Dataset from Library					

Fia. 17 Les dialogues récemment utilisés

** Cliquez sur OK.

Les dialogues utilisés jusqu'ici sont désormais facilement accessibles via la barre d'outils.

** Cliquez sur l'icône (Fig. 17) pour voir les dialogues précédemment utilisés.

** Choisir Import Dataset à partir de la liste résultante, Fig.17.

** Cliquez sur Browse dans la boite de dialogue résultante, Fig. 18, et choisissez la deuxième station Koundara.

Fig. 18 U	n seco	ond jeu de da	onnée	\$			Fig.	19 Les	s donn	ées de	e 2 st	ation	S	
Import Dataset						*	File	Edit P	repare [Describe	Model	Clima	tic To	ols
n [- 🔟			×		-	
New Data Frame Name: Koundara	/se									Data	a View			
	_							Year (c)	Month (c)	Day (c)	Rain	RelHu	Tmax	T
Import Excel Options							1	1970	01	01	0.0	NA	NA	NA
Select Sheet:							2	1970	01	02	0.0	NA	NA	NA
Tmin							3	1970	01	03	0.0	NA	NA	NA
Missing Value String:							4	1970	01	04	0.0	NA	NA	NA
							5	1970	01	05	0.0	NA	NA	NA
Trim Trailing White Space							6	1970	01	06	0.0	NA	NA	NA
Rows to Skip: 1	Data I	Frame Preview:		Lines	to Preview:	10 🚖	7	1970	01	07	0.0	NA	NA	NA
Maximum Rows To Import		Eg.gh.id Eg.el.abbrevi	Year	Month	Day	~	8	1070	01	09	0.0	NIA	NA	NIA
	1	17KDRA1S TMIN	1975	11	01	22	0	1970	01	00	0.0	INA	INA	NA
	2	17KDRA1S TMIN	1975	11	02	24	5	1970	01	09	0.0	NA	NA	NA
	3	17KDRA1S TMIN	1975	11	03	21	10	1970	01	10	0.0	NA	NA	NA
	4	17KDRA1S TMIN	1975	11	04	23	11	1970	01	11	0.0	NA	NA	NA
	5	17KDRA1S TMIN	1975	11	05	20	12	1970	01	12	0.0	NA	NA	NA
	0	17KDRA1S TMIN	1975	11	06	18	12	1070	01	10	0.0		NIA	
		17KDRA1S TMIN	1975	11	07	1.4	15	1970	01	13	0.0	NA	NA	NA
-				_			14	1970	01	14	0.0	NA	NA	NA
Code generated by the	e dialog, Import	Dataset			Refres	h Preview	4 1	Kankan Ko	oundara			<		
Ok Reset C	lose	Help To Script					St	nowing 1	000 of 1	6068 ro	ws I SI	howing	17 of 7	colu

ions Climatio

** Changez le nom de la feuille en Tmin, puis cliquez sur OK.

** *Répétez les étapes* à partir de la Figure 7 a la page 3 jusqu'à la Figure 16, page 6, pour les données de Koundara.

Le résultat avec les 2 feuilles de données se présente tel que sur la Figure 19.

** Utilisez Prepare > Column: Reshape > Append pour fusionner les 2 feuilles de données en une seule, Fig. 20.

			1	Data	View				
	Station (c)	Year	Month	Day	Rain	RelHum	Tmax	Tmin	^
1	Kankan	1950	01	01	0.0	NA	35.8	13.0	
2	Kankan	1950	01	02	0.0	NA	34.8	15.6	
3	Kankan	1950	01	03	0.0	NA	34.7	18.0	
4	Kankan	1950	01	04	0.0	NA	33.9	19.7	
5	Kankan	1950	01	05	0.0	NA	33.8	14.0	
6	Kankan	1950	01	06	0.0	NA	31.2	12.4	
7	Kankan	1950	01	07	0.0	NA	33.0	11.9	
8	Kankan	1950	01	08	0.0	NA	34.4	18.4	
9	Kankan	1950	01	09	0.0	NA	34.3	13.2	
10	Kankan	1950	01	10	0.0	NA	33.5	12.5	
11	Kankan	1950	01	11	0.0	NA	33.3	12.6	
12	Kankan	1950	01	12	0.0	NA	33.5	12.5	
13	Kankan	1950	01	13	0.0	NA	32.0	11.0	
14	Kankan	1950	01	14	0.0	NA	29.2	12.3	~

Cette étape est maintenant terminée. Les données des deux stations, et avec les quatre paramètres, sont dans une seule feuille de données, Fig. 21. Celle-ci comporte 40475 lignes (jours) de données.

Pour terminer cette première partie, nous allons sauvegarder ces données dans des fichiers.

** Allez a *File > Export > Export Dataset*, Fig.22

Fig. 22 Export et sauvegarde des données

File	Edit	Prepare	Describe	Mode	I Climatic	Tools
	New Da Open F	ata Frame rom File	Ctrl+N Ctrl+O			
	Open F	rom Library		ev	V	
	Import	from ODK		c)	Day (c)	Rain
	import	Hom ODK.			01	0.0
	Import	from CSPR	0		02	0.0
	Import	from Datab	ases		03	0.0
	Open N	letCDF			04	0.0
	Conver	t			05	0.0
	-				06	0.0
	Save		Ctrl+S		07	0.0
	Save As			•	08	0.0
	Export				Export Da	taset
	Print		Ctrl+P		Export R (Objects

Export Dataset	5			
Data Frame:				
Guinee2	~			
Export File:	D)/Roger/ICRA	F/Benin/Data/G	iuinee/Guinee2.	csv Browse
Comment:	Code generated	d by the dialog. E	xport Datasets	-
Ok	Reset	Close	Help	To Script

** Cliquez sur Browse, et choisissez l'emplacement ou sauvegarder les données, Fig. 23.

** Apres avoir choisi le nom du fichier, vous retournerez a la Fig. 22, cliquez sur OK. Le fichier le sera sauvegarder qu'après avoir cliqué sur OK.

Il est sauvegardé au format CSV par défaut, qui est facilement être lu avec Excel.

** Faites un clic droit sur Kankan au bas de la feuille.

** Cliquez sur Delete pour supprimer les feuilles de données individuelles, Fig.23. (I think they can first save the individual datasets before closing them)

** Allez à File > Save As > Save Data As, Fig. 24, pour sauvegarder le fichier au format RDS lisible par R-instat.

Fia. 23 Choisir ou exporter les données

Fig. 24. Suppression des feuilles additionnelles

File	Edit Prepare	e Describe	M	odel	Climatic	Tools V	iew
	New Data Frame	Ctrl+N					1
	Open From File	. Ctrl+O					1.
	Open From Libra	ary		BM			
	Innert from OD	v		Rain	RelHum	Tmax	
	import from OD	N		0	NA	35.8	1
	Import from CSP	PRO		.0	NA	34.8	1
	Import from Dat	abases		0	NA	34.7	1
	Open NetCDF			0	NA	33.9	1
	Convert			.0	NA	33.8	1
			-	0	NA	31.2	1
	Save	Ctrl+S		0	NA	33.0	1
	Save As				Save Data A	s	
	Export		٠		Save Output	t Window A	As
	Print	Ctrl+P			Save Log As		
	Print Preview				Save Script	Mindow Ar	2

Fig. 25 File > Save As

<u>Résumé</u>

Cette première partie nous permis d'organiser les données. Elles sont prêtes pour les analyses climatiques avec R-Instat. La tâche principale a été de 'reformater' les données dans une forme utilisable par R-Instat.

Les transformations dépendent de la "forme" initiale des données. D'autres points de départ sont examinés à l'Annexe 1.

Nous avons utilisé les menus *File* et *Prepare* de R-instat. Dans le menu *Prepare*, nous avons particulièrement utilisé le sous-menu *Prepare > Column: Reshape*, puis les dialogues *Append* et *Unstack*. Pour d'autres formats de données, l'on utilisera des options supplémentaires de ce sousmenu, en particulier *Stack* et *Merge*.

4) Ajouter une colonne de Date

** Si vous continuez cette partie à partir de la section précédente, continuez avec les données.

(** Dans le cas contraire, ouvrez le fichier sauvegardé plut haut. Vous pouvez aussi faire *File > Open from Library > Load from Instat Collection > Browse > Climatic > Guinee* and choose the file called *Guinee2.csv*)

Fig. 1 Convertie	la colonne	Station	en f	acteur
------------------	------------	---------	------	--------

	Station (c)	Year Month Day Rain BelHum	Tmax	Tmin
1	Kankan	Rename Column	35.8	13.0
2	Kankan	Duplicate Column	34.8	15.6
3	Kankan	Reorder Column(s)	34.7	18.0
4	Kankan	Delete Column	33.9	19.7
5	Kankan	Convert to Factor	33.8	14.0
6	Kankan	Convert to Pactor	31.2	12.4
7	Kankan	Convert to Ordered Factor	33.0	11.9
8	Kankan	Convert to Character	34.4	18.4
9	Kankan	Convert to Logical	34.3	13.2
10	Kankan	Convert to Numeric	33.5	12.5
11	Kankan	Levels/Labels	33.3	12.6

Fig.	2 Transformer les colonnes	Year, Month,
	Day en numerique	2

		Data	View		
Station (f)	Year (c)	Month (c)	Day (c)	Rain RelHu Tma
Kankan	1950	01	¢	Re	name Column
Kankan	1950	01	¢	Du	plicate Column
Kankan	1950	01	¢	Re	order Column(s)
Kankan	1950	01	C	De	lete Columns
Kankan	1950	01	¢	-	
Kankan	1950	01	0	Co	nvert to Factor
Kankan	1950	01	C	Co	nvert to Ordered F
Kankan	1950	01	C	Co	nvert to Character
Kankan	1950	01	0	Co	nvert to Logical
Kankan	1950	01	-	Co	nvert to Numeric
Kankan	1950	01	1	In	els/Labels
Kankan	1950	01	1	Lei	CIS/ Educision
Kankan	1950	01	1	Fre	eze to Here
Kankan	1950	01	-	Un	freeze

** Faites un clic droit sur le nom Station et choisissez Convert to Factor, Fig.1.

** *Faites un clic droit* sur les colonnes **Year**, **Month** et **Day** (vous pouvez les sélectionner ensemble) et choisissez *Convert to Numeric*, Fig. 2.

Vérifions maintenant que les données sont à peu près comme nous le souhaitons, nous ne voulons pas de mauvaises surprises!

Prepare	Describe	Model	Climatic	Too	ls V	iew
	One	Variable		3	Summ	arise
	Two	Variables			Graph	
	Three	e Variables			Freque	encies
Year	Spec	ific			Dation	Data
50	Gene	ral		_	Kating	Data
50				34.8	15.6	19
50	Mult	ivariate	•	34.7	18.0	19
50	Use (Graph		33.9	19.7	19
50	Com	bine Graph	15	33.8	14.0	19
50	Then	nes		31.2	12.4	19
50	View	Granh		33.0	11.9	15
60	view	oraph		211	10 4	10

Fig. 3 Choisir le dialogue Summarise

Fig. 4 Clic droit pour sélectionner toutes les variables

iuinee2	~	Variable(s) to Summarise:
Variables	^	
Station	Add Selected	
Year	Select All	
Month	Charletin	
Day	Clear Selection	
Rain	Add All	Customias
RelHum	✓ Option:	s Customise
laximum Factor	Levels Shown: 7	1
] Omit Missing Save Result		
Omit Missing	Code generated by the	dialog, One Variable Summarise

** Allez a Describe > One Variable > summarize, Fig. 3.

Remarquez que le bouton OK est grisé, nous devons sélectionner les données à résumer.

** *Faites un clic droit* dans le sélecteur de données, Fig.4, et *cliquez* sur *Add All*. (Ou *sélectionner* toutes les variables et cliquez sur le bouton *Add*.)

	riy.	o nesultuis		
Station	Year	Month	Day	Rain
Kankan :24407	Min. :1950	Min. : 1.00	Min. : 1.0	Mín. : 0.0
Koundara:16068	1st Qu.:1974	1st Qu.: 4.00	1st Qu.: 8.0	1st Qu.: 0.0
	Median :1989	Median : 6.00	Median :16.0	Median : 0.0
	Mean :1988	Mean : 6.47	Mean :15.7	Mean : 3.7
	3rd Qu.:2003	3rd Qu.: 9.00	3rd Qu.:23.0	3rd Qu.: 0.6
	Max. :2017	Max. :12.00	Max. :31.0	Max. :162.7
				NA's :366
RelHum	Tmax	Tmin		
Min. : 5	Min. :21	Min. : 5		
1st Qu.: 44	1st Qu.:32	1st Qu.:19		
Median : 64	Median :34	Median :21		
Mean : 61	Mean :34	Mean :20		
3rd Qu.: 78	3rd Qu.:36	3rd Qu.:23		
Max. :100	Max. :45	Max. :28		
NA's :17766	NA's :4737	NA's :6043		

Eig 6 Pocultate

La sélection est maintenant terminée et le bouton Ok est par conséquent activé. *Cliquez* sur OK.

Examinons maintenant les résultats. Certains points intéressants sont indiqués en rouge sur la figure 6. Ce sont:

- Le facteur Station a seulement 2 niveaux, ce qui normal car nous avons 2 stations. Il y a plus de données à **Kankan** par rapport à **Koundara**, et il n'y a pas de valeurs manquantes dans cette variable.

- Pour la colonne Pluie, le minimum est 0 mm (jour sec) et le maximum est 163 mm. Ce sont des valeurs plausibles. Il y a moins de 400 valeurs manquantes. Elles sont désignées par NA dans R.
- Les colonnes Year, Month, Day sont également celles attendues. Nous avons par exemple les jours qui sont compris entre 1 et 31, et il n'y a pas de valeurs manquantes.
- Il y a plus de valeurs manquantes dans les 3 autres paramètres climatiques. Les valeurs minimales et maximales sont raisonnables.
- Il n'y a pas de valeurs vraiment bizarres, comme par exemple « -99 » qui auraient dû être transformées en valeurs manguantes.

Tout ceci est donc intéressant pour la suite.

L'étape suivante consiste à créer une seule variable de date.

** Allez a *Climatic > Dates > Make Date*, Fig. 7.

Climatic Tools View	Help				
File	R	C			
Dates	+	Generate Dates			
Define Climatic Data		Make Date			
Check Data		Infill Missing Dates			
Prepare		Use Date Make Time			
Climdex					
Describe		Use Time			
PICSA	• [

Fig. 7 Ajouter une variable date

	Single Column	Year and	Day of Year	Year - Morith - Day	
Data Frame:			Three Colu	mins	
Guinee2	~		Year	Year Option:	
	-		Year	4 Digit	4
Variables	<u>^</u>		Month:	Month Option	
Station			Month	Numeric	~
Month		100	Day of Mor	- dite	
Day			Day		
Rain		Data			
RelHum	~	Options			
6					
Save Date: [[Date 1]		
Save Date: []	Date 1 Code generate	d by the dialog, I	/ Make Date		

Fig.8 Le dialogue Climatic > Date > Make Date

** Dans la boite de dialogue Fig. 8, *cliquez* sur le bouton Year-Month-Day, parce que ces 3 colonnes sont présentent dans le fichier actuel.

** Complétez le dialogue en *ajoutant* ces 3 colonnes tel qu'indiqué sur la Fig. 8 puis *cliquez* sur OK.

Cela a ajouté une colonne date, de type (D) a la feuille de données.

L'étape suivante consiste à vérifier s'il y a des dates manquantes dans le fichier. Cela est différent des valeurs manquantes dans les données. Il peut arriver que des années entières aient été omises dans le fichier.

** Notez le nombre de lignes (jours) de données. Il y en a actuellement 40475.

** Allez a *Climatic > Dates > Infill Missing Dates* Fig. 9.

Fig. 9 C	limatic >D	Dates > Infill	Fig. 10 Réin	itialisatio	on du résumé
fill		×	One Variable Summarise		
Data Frame:		Date:	Data Frame: Guinee2		
Factors Station	Add	By Factors: Guinee2	Variables ^ Station Year Month Day Rain RelHum ~	Add Data Options	Customise
	Data Options	Sort Data after Infilling	Maximum Factor Levels Shown Omit Missing Values Save Result	7 🛊	(Compared)
Comment: Code generat	ed by the dialog, I	nfill	Comment: Code generat	ted by the dialog	, One Variable Summarise
Ok Reset	Close	Help To Script	Reset	Close	Hab To Down

Vous constatez que la case Date de la Figure 9 est remplie automatiquement.

** Cliquez dans le champ By Factors et Add the Station Column, Fig. 9.

** Cliquez sur OK.

La longueur du fichier est maintenant de 42063 lignes. Donc environ 1600 lignes (jours) ont été ajoutées.

** Utilisez encore le menu **Describe > One Variable > Summarize**. (Souvenez-vous que vous pouvez avez aussi le bouton de la barre d'outil pour les 10 derniers dialogues utilisés.)

** Cliquez sur le bouton *Reset*, Fig.10.

** Faites un clic droit dans le sélecteur de données (comme précédemment), et cliquez sur Add All.

** Cliquez sur OK.

Station	Year	Month	Day	Rain
Kankan :24653	Min. :1950	Min. : 1.0	Min. : 1.0	Min. : 0.0
Koundara:17410	1st Qu.:1974	1st Qu.: 4.0	1st Qu.: 8.0	1st Qu.: 0.0
	Median :1989	Median : 6.0	Median :16.0	Median : 0.0
	Mean :1988	Mean : 6.5	Mean :15.7	Mean : 3.7
	3rd Qu.:2003	3rd Qu.: 9.0	3rd Qu.:23.0	3rd Qu.: 0.6
	Max. :2017	Max. :12.0	Max. :31.0	Max. :162.7
	NA's :1588	NA's :1588	NA's :1588	NA's :1954
RelHum	Tmax	Tmin	Date1	
Min. : 5	Min. :21	Min. : 5	Min. :1950-01	-01
1st Qu.: 44	1st Qu.:32	1st Ou.:19	1st Qu.: 1974-05	-25
1st Qu.: 44 Median : 64	1st Qu.:32 Median :34	1st Qu.:19 Median :21	1st Qu.:1974-05 Median :1988-10	5-25)-16
1st Qu.: 44 Median : 64 Mean : 61	1st Qu.:32 Median :34 Mean :34	1st Qu.:19 Median :21 Mean :20	1st Qu.:1974-05 Median :1988-10 Mean :1987-12	5-25 9-16 2-03
1st Qu.: 44 Median : 64 Mean : 61 3rd Qu.: 78	1st Qu.:32 Median :34 Mean :34 3rd Ou.:36	1st Qu.:19 Median :21 Mean :20 3rd Ou.:23	1st Qu.:1974-05 Median :1988-10 Mean :1987-12 3rd Qu.:2003-03	5-25 0-16 2-03 3-09
1st Qu.: 44 Median : 64 Mean : 61 3rd Qu.: 78 Max. :100	1st Qu.:32 Median :34 Mean :34 3rd Qu.:36 Max. :45	1st Qu.:19 Median :21 Mean :20 3rd Qu.:23 Max. :28	1st Qu.:1974-05 Median :1988-10 Mean :1987-12 3rd Qu.:2003-03 Max. :2017-08	5-25 0-16 2-03 3-09 3-31
1st Qu.: 44 Median : 64 Mean : 61 3rd Qu.: 78 Max. :100 NA's :19354	1st Qu.:32 Median :34 Mean :34 3rd Qu.:36 Max. :45 NA's :6325	1st Qu.:19 Median :21 Mean :20 3rd Qu.:23 Max. :28 NA's :7631	1st Qu.:1974-05 Median :1988-10 Mean :1987-12 3rd Qu.:2003-03 Max. :2017-08	5-25 9-16 2-03 3-09 9-31

Fig. 11 Résultats du menu Describe > One Variable > Summarise

On obtient les résultats de la Fig. 11. Etant donné que des données ont été remplies, il manque des valeurs dans les colonnes Année, Mois et Jour. Nous devons donc y remédier. Heureusement, il n'y a pas de valeurs manquantes dans les colonnes **Date** et **Station**.

** Allez à *Climatic > Dates > Use Date*, voir Fig. 4 pour le menu.

** Complétez tel que qu'indiqué sur la Figure 12 et cliquez sur OK.

Cela a généré 4 nouvelles colonnes, Fig. 13, pour l'année, le mois (avec les étiquettes), le jour du mois et le jour de l'année. L'on peut maintenant remplacer les 3 premières colonnes (avec des dates manquantes) par celles nouvellement générées après le remplissage.

	Fig. 12	Climatic	> Dates > Use D	ate	Fig.	13 Resulti	ng co	lumns	s genero	ited		
Use Date				×	Data View							
Data Frame:					-	Date1 (D)	month	year	day_in_m	doy	^	
Guinee2	~		Date Column:		1	1950-01-01	Jan	1950	1	1		
Dates			Date1		2	1950-01-02	Jan	1950	2	2		
Date1	-	Add			3	1950-01-03	Jan	1950	3	3		
					4	1950-01-04	Jan	1950	4	4		
		Data			5	1950-01-05	Jan	1950	5	5		
		Options			6	1950-01-06	Jan	1950	6	6		
Values Vear	Wee	kdav	Shifted	Full Name	7	1950-01-07	Jan	1950	7	7		
Month	Day	in Year	Shift Year	Month	8	1950-01-08	Jan	1950	8	8		
Day	Day	in Year (366)	Month: August		9	1950-01-09	Jan	1950	9	9		
U Week			Day: 1 ÷	Abbreviation	10	1950-01-10	Jan	1950	10	10		
Other Functions				Weekday	11	1950-01-11	Jan	1950	11	11		
Leap Year	Per	tad [] Dekad	Montr	12	1950-01-12	Jan	1950	12	12		
Comment:	ada gaparat	ad by the dialog	Uno Dato	-	13	1950-01-13	lan	1950	13	13	~	
Ok	Reset	Close	Help To Sc	ript	Sho	wing 1000	of 420)63 rov	ws Show	wing	13	

** *Sélectionnez* les 3 colonnes de date originales (non désirées), *faites un clic droit* et *choisissez Delete colons*, Fig. 14.

** Confirmez la suppression, Fig. 15.

Fig. 14 Supprimer les colonnes non désirées

Statio	Year	Month	Day ,	Rain RelHLA
Kank	1950	1	1	Rename Column
Kank	1950	1	2	Duplicate Column
Kank	1950	1	3	Reorder Column(s)
Kank	1950	1	4	Delete Columns
Kanka	1950	1	5	Convert to Easter
Kank	1950	1	6	Convert to Pactor
Kanka	1950	1	7	Convert to Ordered P
Kank	1950	1	8	Convert to Character
Kanka	1950	1	9	Convert to Logical
Kank	1950	1	10	Convert to Numeric

Fig. 15 Confirmer la suppression

Enfin pour cette section, nous allons réorganiser les colonnes du fichier de manière à avoir d'abord les colonnes des dates avant celles des données.

- ** Faites un clic droit dans le champ des noms, Fig. 14, et sélectionnez Reorder Columns.
- ** *Réordonner* les colonnes comme indiqué sur la Figure 16.
- ** Cliquez sur OK. Les donnes se présentent maintenant comme sur la figure 17.

Fig. 16 Réorganiser les colonnes de la feuille

Data Frame:		Columns to Reor	der:	
Guinee2	~	Variables Station Date 1 year month_abbr day_in_month doy_366 Rain Ballem €	~	* • *
Comment:	Code generat	ed by the dialog, Re	eorder Columns	
Ok	Reset	Close	Helo	To Script

Fig. 17 Les données résultantes

	Station	Date1 (D)	year	month	day_in	doy_	Rain	10
1	Kankan	1950-01-01	1950	Jan	1	1	0.0	t.
2	Kankan	1950-01-02	1950	Jan	2	2	0.0	t.
3	Kankan	1950-01-03	1950	Jan	3	3	0.0	r.
4	Kankan	1950-01-04	1950	Jan	4	4	0.0	I.
5	Kankan	1950-01-05	1950	Jan	5	5	0.0	1
6	Kankan	1950-01-06	1950	Jan	6	6	0.0	t
7	Kankan	1950-01-07	1950	Jan	7	7	0.0	1
8	Kankan	1950-01-08	1950	Jan	8	8	0.0	t.
9	Kankan	1950-01-09	1950	Jan	9	9	0.0	I.
10	Kankan	1950-01-10	1950	Jan	10	10	0.0	1
11	Kankan	1950-01-11	1950	Jan	11	11	0.0	1
12	Kankan	1950-01-12	1950	Jan	12	12	0.0	1
13	Kankan	1950-01-13	1950	lan	13	13	00	1

Vous pouvez maintenant enregistrer les données comme décrit précédemment à la section 3. Cependant, la section suivante étant très courte, vous pouvez d'abord le faire avant l'enregistrement.

5) Définir les données comme climatiques

La dernière étape pour la préparation des données consiste à les définir comme données climatiques.

** Utiliser le menu *Climatic > Define Climatic data*, Fig. 1.

efine Climatic Da	ata			
Data Frame:				
Guinee2	~			
Variables		T		
Date 1				Elements
		Add		Rain:
				Rain
				Minimum Temperature
		Data		Tmin
		Options		Maximum Temperature
Station		Date and Time		Tmax.
Name:		Date:		Wind Speed:
Station		Date 1		
Lesses		Year:	_	Wind Direction:
		vear		
		Month:		Sunshine Hours
		month abbr		Summer Product.
		Dav	_	Dadiation
		day in month	-	nauauun.
		Day of Year	_	Churd Course
		day 366	-	Cloud Cover.
		00y_000		
Comment:	Code gener	ated by the dialog, Defi	ne Climatic	Data
Ok	Renat	Close	Helo	To Seriet

Pour ce jeu de données, les cases de la boite de dialogue ont été remplies automatiquement. C'est dû au fait que R-Instat ait identifié les noms des colonnes. Dans le cas contraire, les cases doivent être remplies manuellement.

** Cliquez sur OK.

Aucun changement visible n'a été observé. Nous allons donc profiter de cette occasion pour présenter une troisième fenêtre dans R-Instat.

Jusqu'à présent, vous n'avez utilisé que 2 fenêtres : celle pour les données et une autre pour les résultats.

** Dans la barre des tâches, cliquez sur l'icône avec un « i » (i pour informations), Fig. 2.

File	Edit	Prepare De	escribe	Model	Clim	atic	Tools	s Vie	ew Help		
	- 🔟		B	×	32		•		N	RC	
					Colur	nn M	letad	lata			
	Na	me	label	clas	55	Clir	natic_1	Туре	ls_Hidden	Scientific	
1	Station			factor		stati	on		FALSE	FALSE	
2	Date1			Date		date			FALSE	FALSE	
3	year			numeric		year			FALSE	FALSE	
4	month_a	abbr		ordered,	factor	mon	th		FALSE	FALSE	
5	day_in_	day in month		integer		day			FALSE	FALSE	
6	doy 366			integer		doy			FALSE	FALSE	
7	Rain			numeric		rain			FALSE	FALSE	
8	RelHum			numeric		NA			FALSE	FALSE	
9	Tmax			numeric		temp	_max	c	FALSE	FALSE	
•	Guinee2					1 <					
					D	ata	View				
	Station	Date1 (D)	year	month	day_in	doy_	Rain	RelHu	Tmax	Tmin	
1	Kankan	1950-01-01	1950	Jan	1	1	0.0	NA	35.8	13.0	
2	Kankan	1950-01-02	1950	Jan	2	2	0.0	NA	34.8	15.6	
3	Kankan	1950-01-03	1950	Jan	3	3	0.0	NA	34.7	18.0	
4	Kankan	1950-01-04	1950	Jan	4	4	0.0	NA	33.9	19.7	
5	Kankan	1950-01-05	1950	Jan	5	5	0.0	NA	33.8	14.0	
6	Kankan	1950-01-06	1950	Jan	6	6	0.0	NA	31.2	12.4	
7	Kankan	1950-01-07	1950	Jan	7	7	0.0	NA	33.0	11.9	
8	Kankan	1950-01-08	1950	Jan	8	8	0.0	NA	34.4	18.4	
9	Kankan	1950-01-09	1950	Jan	9	9	0.0	NA	34.3	13.2	

Fig. 2 La colonne métadonnées

** *Tirez* pour agrandir la fenêtre des métadonnées, tel que sur la Figure 2.

Dans cette fenêtre, on a une ligne qui correspond à chaque colonne de la fenêtre de données. L'élément nouveau est que nous avons maintenant une colonne d'informations nommé Climatic_Type dans les métadonnées.

Cela simplifiera les dialogues pour les analyses climatiques pour les prochaines sections de ce guide. Notez également qu'une étiquette peut être ajoutée pour donner plus de détails sur le contenu de n'importe quelle colonne.

** Cliquez encore sur le bouton «i» de la barre d'outils pour fermer la fenêtre des métadonnées. Vous pouvez également utiliser la flèche bouclée pour réinitialiser les fenêtres à leurs valeurs par défaut.

Enregistrez enfin les données. Nous sommes maintenant prêts à démarrer les analyses.

** Allez à *File > Save As > Save Data As,* on a la boite de dialogue de la Fig. 3.

** Cliquez sur *Browse*, Fig. 3 et choisissez ou sauvegarder les données.

Fi	g. 3 File	> Save A	ls > Sav	e Data A	F	Fig. 4 Exportation des données					
Save Data As					Export Datase	ets					
Save Data To:	Drophox (SSD)	Boger/ICBAF/F	lenin/Data/Guin	nee/Guinee2 DS	Data Frame:						
Sure Duto 10.	Click Ok to confirm the save			Click Ok to confirm the save		Guinee2	*				
Comment:	Code generate	d by the dialog	Save Data As		Export File:	D)/Roger/ICR/	AF/Benin/Data/(Guinee/Guinee2.csv	Browse		
OL.	Peast	Clean	Hele	To Covint	Comment:	Code generate	d by the dialog.	Export Datasets			
UK	neset	Close	Help	10 Script	Ok	Reset	Close	Help	To Script		

** Cliquez sur Save dans la boite de dialogue résultante pour retourner à la Fig. 3.

** Cliquez sur **Ok**, ce que enregistrera effectivement le fichier.

** Si vous le voulez, vous pouvez choisir *File > Export > Export Dataset*, Fig. 4. Ensuite, cliquez sur *Browse*, *Save*, et enfin sur *Ok*.

Le fichier a été enregistré au format CSV. Celui-ci peut être visualisé dans Excel, et plus tard importé de nouveau dans R-Instat. Cependant, il ne sauvegarde pas les métadonnées.

- 6) Vérification de la qualité des données
- ** Continuer avec les données de la section précédente

** (Sinon, allez a *File > Open from Library > Load from Instat Collection > Browse > Climatic > Guinée* et ouvrez le fichier *Guinea2.RDS*)

C			Date:	-
Guinee2	~		Date1	
Numerics	^		Element(s):	
doy_366	_	Add		
Rain		-		
Tmax				
Tmin	~	Options	Station (Ontion all)	
-		(material and the second	Station	
	COLUMN.		Contraction	_
Plot Type				
Plot Type	ot O Year-D	OY Plot Fac	et By: Default	2
Plot Type	ot () Year-D	XOY Plot Fac	et By: Default	2
Plot Type	ot OYear-D nates	DOY Plot Fac	et By: Default	2
Plot Type	ot () Year-D Nates n Days	DOY Plot Fac	et By: Default	2
Plot Type	ot O Year - D hates In Days [Inventory Plot	XOY Plot Fac	et By: Default	2
Plot Type Date Plot Plip Coordin Display Rai Graph Title: Save Graph	ot OYear-D hates In Days Inventory Plot	XOY Plot Fac	et By: Default	2
Plot Type Date Plot Display Rai Graph Title: Save Graph Comment:	ot Year-D hates In Days Inventory Plot	NOY Plot Fac	et By: Default	2

Fig. 2 Climatic > Check Data > Inventory

Nous avons abordé a la section 4 les options de menu **Dates** et à la section 5 la boîte de dialogue **Define Climatic Data**. Nous continuons maintenant avec des dialogues qui servent à la vérification des données.

** Allez a *Climatic > Check Data > Inventory*, Fig. 1.

** Comme sur la Figure 2, *sélectionner les 4 paramètres* et *cliquez* sur *Add*. *Cliquez* ensuite sur OK.

Fig. 3 Sc	chema d'in	ventaire de	Kankan et k	Coundara	Fig. 4 Dia	logue	pour le	second plot
Tmin -					Data Frame:	~		Date:
Tmax-				Kank	Numerics Date1	^		Date 1 Element(s): Guinee2
RelHum -				an	year month_abbr day_in_month		Add	Rain
Rain -					doy_366 Rain Inventory Plot Option	~	Data Options	Station (Option Station
Tmin -					Options Plot Type		_	
Tmax-				Kound	Date Plot Flip Coordinates) Year - D	OY Plot	Facet By: Default
RelHum -				878	Graph Title: Inve	ntory Plot		
Rain -					Comment: Coc	le generate	ed by the dia	log, Inventory Plot
	1960	1980	2000	2020	Ok	Reset	Close	Help

La figure 3 présente l'inventaire pour les 2 stations, le graphique du haut étant celui de Kankan. Les zones rouges indiquent la présence de données manquantes. Les données pluie présentent quelques valeurs manquantes. Les données de température pour Kankan commencent en 1950, et il y a un peu plus de valeurs manquantes pour Tmax.

Les données de précipitations pour Koundara commencent vers 1970, tandis les données de température commencent quelques années plus tard. Il y a des périodes manquantes occasionnelles dans la première partie des enregistrements de pluie, mais presque aucune plus tard.

- ** Retournez à la boite de dialogue *Inventory*. (Utilisez le bouton de la barre d'outils.)
- ** Cliquez sur le bouton *Reset*, Fig. 4.
- ** Juste sélectionner le paramètre *Rain*, Fig. 4.

** Cochez les autres cases tel que sur la Figure 4 pour afficher *display the rain days* (jours de pluie) et days in the year (jours de l'année).

** Cliquez sur Ok pour obtenir les résultats de la Fig. 5.

Nous constatons à partir de la figure 5 qu'il y a une seule saison des pluies dans les 2 villes, avec celle de Kankan étant la plus longue. Les données sont d'assez bonne qualité de façon. Par exemple, il n'y a pas de valeurs très étranges.

L'option suivante dans *Climatic > Check Data* présente les valeurs journalières de manière plus détaillée.

Cette opération prend plus de temps pour une plus grande de quantités de données. Nous allons tout d'abord appliquer un filtre pour analyser les premières années de Koundara. Le filtrage est une option très puissante dans R-Instat.

**Placez la souris sur le nom des colonnes et faites un clic droit, puis cliquez sur Filter, Fig. 6.

	F	ig. 6 Selec	tionner Filter	Fig. 7 Définir un nouveau filtre
	Station (f)	Date1 (D)	vear month abbr day in min	Filter
1	Kankan	1950-01-01	Rename Column	Data Frame:
2	Kankan	1950-01-02	Duplicate Column	Guinee2 V
3	Kankan	1950-01-03	Reorder Column(s)	Filters
4	Kankan	1950-01-04	Delete Column	no_filter
5	Kankan	1950-01-05	Connection Franker	Add Define New Filter
6	Kankan	1950-01-06	Convert to Factor	
7	Kankan	1950-01-07	Convert to Ordered Factor	Data
8	Kankan	1950-01-08	Convert to Character	Options
9	Kankan	1950-01-09	Convert to Logical	Apply Options
10	Kankan	1950-01-10	Convert to Numeric	Apply As Filter Apply As Subset
11	Kankan	1950-01-11	Levels/Labels	
12	Kankan	1950-01-12		Selected Eller Province ()
13	Kankan	1950-01-13	Freeze to Here	
14	Kankan	1950-01-14	Unfreeze	Code generated by the dialog, Filter
15	Kankan	1950-01-15	Sort	Reset Close Help Talsa
16	Kankan	1950-01-16	Filter	
17	Kankan	1950-01-17	Remove Current Filter	
18	Kankan	1950-01-18		
19	Kankan	1950-01-19	1950 Jan 19	

** Dans la boite de dialogue *Filter*, *cliquez* sur *new filter*, Fig. 7.

Fig. 8 Filtre pour	un niveau d	de facteur
--------------------	-------------	------------

Fig. 9 Filtre pour des années particulières

Define New Filter			*	Define New Filter	
Data Frame: Csimes2 Vanables Station Station Station Station Add day :g, protth day, 365 v	Filter By: Strong Add Condition	Select Levels: Trid, Label Freg Select Level Kankan 24653 V 2 Coundars 17410 - (NK) U	-	Data Frame: Currenz2 Vanables Station Defe1 vear montn_abor day_sfo5 v	Fiker By: Institution Add Condition
Variable Condition	Barrison and Bar			Variable Condition "Station" %in%, "Koundara"	
Fiter Preview:	Clear Conditions	c Select Al	> Levels	Fiter Preview: (Station "un": Koundara) New Fiter Name: Fiter1	Clear Conditions

Sélectionnez d'abord Station.

- ** Nous choisissons de filtrer à partir de la variable **Station**, Fig. 8.
- ** Sélectionnez Koundara plutôt que Kankan, ensuite cliquez sur Add Condition.

Sur la Figure 9, nous constatons que la condition a été appliquée par ce message « Station %in% 'Koundara' ». Nous allons maintenant ajouter une autre condition.

- ** Choisissez la colonne year, Fig. 9.
- ** Définissez la condition '<' (inferieure a), et saisissez l'année 1983, Fig. 9.
- ** Cliquez sur Add Condition
- ** Maintenant que nous avons ajouté les 2 conditions, cliquez sur Return.

	Fig. 1	0 Le filter d	n été défii	ni		Fig	g. 11 Le fi	iltre es	t appliqu	é	
ilter				x			Da	ata Viev	V		
Data Frame:						Station (f)	Date1 (D)	year	month_abbr	day_in_m	doy A
Guinee2		~			24654	Koundara	1970-01-01	1970	Jan	1	1
		_	Filter:		24655	Koundara	1970-01-02	1970	Jan	2	2
Filters			Filter		24656	Koundara	1970-01-03	1970	Jan	3	3
no_filter Filter1		Add	Define N	ew Filter	24657	Koundara	1970-01-04	1970	Jan	4	4
T MARY T					24658	Koundara	1970-01-05	1970	Jan	5	5
		-			24659	Koundara	1970-01-06	1970	Jan	6	6
		Optoins			24660	Koundara	1970-01-07	1970	Jan	7	7
Apply Options					24661	Koundara	1970-01-08	1970	Jan	8	8
Anniv As Fil	ter C) Apply As Subset			24662	Koundara	1970-01-09	1970	Jan	9	9
C. they is in		, , , , , , , , , , , , , , , , , , , ,			24663	Koundara	1970-01-10	1970	Jan	10	10
					24664	Koundara	1970-01-11	1970	Jan	11	11
Selected Filter P	Preview: ((year < 1983) & (Stat	ion %in% c('Kound	lara")))	24665	Koundara	1970-01-12	1970	Jan	12	12
Comment:	Code gen	nerated by the dialog	, Filter		24666	Koundara	1970-01-13	1970	Jan	13	12 4
Ok	Reset	Close	Help	To Script	Sho	wing 100	0 of 4748	rows (4	2063) Sh	lowing 1	0 of

** De retour sur la boite de dialogue Filter, Fig. 10, *cliquez* sur Ok.

Sur la figure 11, on constate que la première colonne est maintenant en rouge. Cela indique qu'un filtre est actif. Les données commencent maintenant actif. Nous constatons aussi que seulement 4748 lignes de données (sur les 42063 lignes) ont été sélectionnées pour cette étape de l'analyse.

Tutoriel d'introduction : Partie 1: Description des données

Introduction

Bienvenue dans ce tutoriel d'introduction R-Instat. R-Instat est un logiciel de statistiques gratuit alimenté par le langage de programmation et logiciel R. Il est conçu pour exploiter la puissance du système statistique R, tout en étant aussi facile à utiliser que d'autres paquets de statistiques de configuration pointer-cliquer traditionnels.

R-Instat est le premier produit à avoir été développé dans le cadre de l'African Data Initiative (ADI), un projet collaboratif visant à renforcer la maîtrise de l'analyse de statistiques et de la gestion de l'information en Afrique et au-delà. L'objectif global du projet African Data Initiative va au-delà du développement de ce logiciel, mais R-Instat est une étape préliminaire importante.

L'auditoire d'R-Instat a été établi à travers la campagne de financement participatif qui a lancé son développement. Selon nous, il était important de développer davantage de logiciels statistiques gratuits, open source et faciles à utiliser, qui auraient pour but d'encourager de bonnes pratiques statistiques.

"Instat" dans "R-Instat" se réfère à un simple ensemble de statistiques développé dans les années 1980 avec des objectifs et publics cibles similaires à ceux d'R-Instat, et une grande partie de la philosophie de R-Instat est inspirée par Instat. Instat a inclus un menu spécial pour l'analyse des données climatiques et R-Instat a suivi ce modèle. En plus R-Instat inclut un autre menu spécial pour l'analyse des données sur les marchés publics.

Nous vous <u>recommandons</u> de suivre les <u>instructions d'installation</u>. Dans ce document, nous nous concentrons sur l'introduction du logiciel une fois celui-ci installé.

L'équipe ADI (R-Instat) R-Instat@AfricanMathsInitiative.net

Lancer R-Instat pour la première fois

Maintenant que vous avez installé R-Instat, il est temps de le faire démarrer.

Lorsque R-Instat s'exécute pour la première fois, si vous n'avez pas utilisé le logiciel R auparavant ou si une version récente de R a été installée sur votre ordinateur, il se peut que ce message apparaisse :

"Would you like to use a personal library instead?" ("Voudriez-vous plutôt utiliser une collection personnelle"?)

 \rightarrow Cliquez sur Yes (Oui) pour que le logiciel procède à l'installation des paquets R requis sur votre ordinateur dans un dossier situe dans vos documents.

Après avoir cliqué sur Yes (Oui), vous verrez sans doute le message suivant :

"Would you like to create a personal library" ("Voulez-vous créer une bibliothèque personnelle")

 \rightarrow Cliquez à nouveau sur Yes (Oui) pour autoriser R à installer les packages dans le dossier spécifié.

Si ce message n'apparait pas (et qu'aucune erreur n'apparaît), cela voudra dire que les paquets R ont été correctement installés - il est probable que vous disposiez déjà des structures de dossiers nécessaires.

Quand une commande prend plus de temps à s'exécuter (ici à installer des paquets), vous verrez le message "Sorry for the Wait" ("Désolé pour l'attente") (ci-dessus), qui vous indiquera que R-Instat est toujours en cours.

La première fois que vous exécuterez R-Instat, il vous faudra patienter, car de nombreux paquets R seront installés. L'exécution se fera beaucoup plus rapidement par la suite car les paquets seront déjà installés.

Une fois le dialogue d'attente a disparu, vous pourrez commencer à utiliser R-Instat!

Explorer R-Instat

Cette section fournit une premier série d'exemples pour vous aider à vous familiariser avec R-Instat et ses caractéristiques de base.

1. L'installation.

Actuellement, R-Instat est disponible uniquement pour Windows. Nous conseillons aux utilisateurs de Mac et Linux de l'utiliser à travers une machine Windows virtuelle. Nous prévoyons de développer une version multiplateforme bientôt.

Une fois installé et activé, vous devriez voir l'écran ci-dessous :

Fig. 1: R-Instat main Interface

2. Votre première tâche - Importer des données de la bibliothèque

→ Appuyez sur File> Open From Library (Fichier> Ouvrir à partir de la bibliothèque).

 \rightarrow Appuyez sur la liste déroulante From Package et choisissez ggplot2.

 \rightarrow Choisissez le premier exemple, « diamonds » comme indiqué dans la Fig. 8. Vous devriez voir qu'un second bouton d'aide est maintenant activé, juste en dessous de la liste de bases de données.

 \rightarrow Appuyez sur ce bouton pour obtenir plus d'informations sur la base de données soit l'ensemble des données utilisées par Hadley Wickham, l'auteur du paquet ggplot2.

				Ope	n Dataset f	from Library	E
File	Edit Prepare Describe Model New Data Frame C Open From File	Climatic trl+N trl+Q	From Package:	Load fro	om R	Load from Instat co	llection
	Open From Library		Data		Description	ALL DO NOT	^
	Import from ODK Import from CSPRO Import from Databases		diamonds economics economics_lor faithfuld luv_colours	pg	Prices of 50, US economi US economi 2d density es 'colors()' in Li	000 round cut diamo c time series c time series stimate of Old Faithfu uv space	nds I data
	Convert	10.11	midwest mpg		Midwest den Fuel econom	iographics iv data from 1999 an	d 2008 for 38 p
	Save (Ctrl+S	≪ s		An undated	and averanded vamia	un of the mamm."
	Save As	•	New Data Fram	e Name: diar	monds		Help
	Export	•	Comment:	code gener	ated by the dia	log Open Dataset fro	om Library
			Ok	Reset	Close	Help	To Script

→ Revenez maintenant à la boîte de dialogue, sélectionnez à nouveau la base de données « diamonds » et appuyez sur OK.

				Da	ata Vie	W				
	carat	cut (o.f)	color (o.f)	clarity (o.f)	depth	table	price	х	У	2
1	0.23	Ideal	E	SI2	61.5	55.0	326	3.95	3.98	2.43
2	0.21	Premium	E	SI1	59.8	61.0	326	3.89	3.84	2.31
3	0.23	Good	E	VS1	56.9	65.0	327	4.05	4.07	2.31
4	0.29	Premium	1	VS2	62.4	58.0	334	4.20	4.23	2.63
5	0.31	Good	J	SI2	63.3	58.0	335	4.34	4.35	2.75
6	0.24	Very Goo	J	VVS2	62.8	57.0	336	3.94	3.96	2.48
7	0.24	Very Goo	d	VVS1	62.3	57.0	336	3.95	3.98	2.47
8	0.26	Very Goo	H	SI1	61.9	55.0	337	4.07	4.11	2.53
9	0.22	Fair	E	VS2	65.1	61.0	337	3.87	3.78	2.49
10	0.23	Very Goo	H	VS1	59.4	61.0	338	4.00	4.05	2.39
11	0.30	Good	J	SI1	64.0	55.0	339	4.25	4.28	2.73
12	0.23	Ideal	J	VS1	62.8	56.0	340	3.93	3.90	2.46
13	0.22	Premium	F	SI1	60.4	61.0	342	3.88	3.84	2.33
14	0.31	Ideal	J	SI2	62.2	54.0	344	4.35	4.37	2.7
15	0.20	Premium	E	SI2	60.2	62.0	345	3.79	3.75	2.27
16	0.32	Premium	E	11	60.9	58.0	345	4.38	4.42	2.68
17	0.30	Ideal	1	SI2	62.0	54.0	348	4.31	4.34	2.68
18	0.30	Good	J	SI1	63.4	54.0	351	4.23	4.29	2.70
19	0.30 diamonds	Good	.1	SI1	63.8	56 0	351	4 23	4 26	27
		Showing	1000 of	53940 rd	owsis	howing	10 of	10 col	umns	

Fig. 3 The diamonds data

 \rightarrow Faites défiler les données vers le bas, vous verrez que seulement 1000 lignes apparaissent. C'est juste une fenêtre sur une partie du data frame (la matrice de données) disponibles dans le paquet

 \rightarrow Faites un **clic droit** sur l'onglet inférieur, Fig. 4.

→ Choisissez la dernière option, **View Data** (Afficher les données). De cette façon, vous pourrez voir l'ensemble des données, illustré ci-dessous (Fig. 4).

					File				di	amonds	\$			-	
					-	carat	cut	color	clarity	depth	table	price	x	v	z
18	0.30	Good	J	SI1	53922	0.70	Very Good	E	VS2	62.8	60.0	2755	5.59	5.65	3.53
19	0.30	Good	1	SII	53923	0.70	Very Good	D	VS1	63.1	59.0	2755	5.67	5.58	3.55
4.1	diamondel	VIIII			53924	0.73	Ideal	I	VS2	61.3	56.0	2756	5.80	5.84	3.57
1 1	aramonos	Inse	ert		53925	0.73	Ideal	I	VS2	61.6	55.0	2756	5.82	5.84	3.59
					53926	0.79	Ideal	I	SI1	61.6	56.0	2756	5.95	5.97	3.67
	1.2	Del	ete		53927	0.71	Ideal	Е	SI1	61.9	56.0	2756	5.71	5.73	3.54
diamo	nds	Dam			53928	0.79	Good	F	SI1	58.1	59.0	2756	6.06	6.13	3.54
		Ken	Idme		53929	0.79	Premium	Е	SI2	61.4	58.0	2756	6.03	5.96	3.68
	-	Rec	order		53930	0.71	Ideal	G	VS1	61.4	56.0	2756	5.76	5.73	3.53
			a crim		53931	0.71	Premium	Е	SI1	60.5	55.0	2756	5.79	5.74	3.49
		Cop	py		53932	0.71	Premium	F	SI1	59.8	62.0	2756	5.74	5.73	3.43
					53933	0.70	Very Good	E	VS2	60.5	59.0	2757	5.71	5.76	3.47
		Hid	e		53934	0.70	Very Good	Е	VS2	61.2	59.0	2757	5.69	5.72	3.49
		The	hide		53935	0.72	Premium	D	SI1	62.7	59.0	2757	5.69	5.73	3.58
		Uni	nide		53936	0.72	Ideal	D	SI1	60.8	57.0	2757	5.75	5.76	3.50
		View	w Data Fra	me N	53937	0.72	Good	D	SI1	63.1	55.0	2757	5.69	5.75	3.61
		115		15	53938	0.70	Very Good	D	SI1	62.8	60.0	2757	5.66	5.68	3.56
					53939	0.86	Premium	Н	SI2	61.0	58.0	2757	6.15	6.12	3.74
					53940	0.75	Ideal	D	SI2	62.2	55.0	2757	5.83	5.87	3.64

Fig. 4. Visualiser la base de donnees

Il y a 10 colonnes (variables) de données dans ce fichier, dont 7 sont **numeric** (numériques) et 3 sont **categorical** (catégorielles). Les colonnes catégorielles sont dénommées « **factors** » et sont désignées à l'aide d'un "f" après le nom de la colonne. Ces colonnes catégorielles sont effectivement ordonnées, par exemple la deuxième colonne, à savoir « the cut » (la coupe) des diamants varie de **Fair** à **Ideal**. Les colonnes catégorielles ordonnées sont désignées à l'aide du symbole "**(o.f)**" à la suite du titre de la colonne dans R-Instat.

Ces données sont prêtes à être analysées, nous pouvons donc vous montrer quelques graphiques à l'aide du menu « Describe ».

3. Quelques graphiques

→ Appuyez sur **Describe > One Variable > Graph**, Fig. 5. (* Décrire> Une variable> Graphique, Fig. 5.)

 \rightarrow **** Cliquez avec le bouton droit *** dans le sélecteur de variables et choisissez l'option **Add All** (Ajouter tout). (Vous pouvez également, si vous le souhaitez, sélectionner toutes les colonnes, puis cliquer sur *** Add/Ajouter ***) Fig. 5.

				2	One	Variable (Graph	
ribe Model Clir	matic Procu	irement	Tc	Data Frame: diamonds	~		Selected Va	riables:
One Variable Two Variables	 Si G 	ummarise raph	2	Variables carat	^			
Three Variables Specific	Fr R	equencie ating Dat	:5 8	cut color clarity	Add Selecte Select All	ed		
Multivariate	65.0	326 327 334	4.	depth table	Clear Select Add All	tion	Output	
Use Graph	58.0	335	4.	Graph Options			Facets Combin	ned Graph
Combine Graphs Themes	57.0 57.0	336	3.	Flip Coordinates) Single	Graphs
View Graph	55.0	337	4.	Save Graph				
				Comment: co	de generated	by the dialog (One Variable Grap	h
			_	Ok	Reset	Close	Help	To Ser

Dans la boîte de dialogue de la figure 5, le bouton radio n'est plus Facets (Facettes) mais Combine Graph (Graphique combines), voir Fig. 6. En effet, les variables sélectionnées ont des types de données différents. Certaines colonnes sont catégorielles tandis que d'autres sont numériques.

 \rightarrow Appuyez sur OK pour afficher les résultats indiqués sur la Fig. 6.

Fig. 6. Graphique Variable individuelle

Vous connaissez surement déjà les « box plots » Nous vous en parlerons un peu plus tard, même si ce tutoriel vise principalement à montrer comment utiliser R-Instat, plutôt qu'à enseigner les statistiques.

Souvent, les résultats de l'utilisation d'un dialogue peuvent être améliorés, de sorte que vous souhaiterez l'utiliser à nouveau. Vous pouvez utiliser les mêmes options de menu que sur la Fig. 5, mais il existe un moyen plus rapide.

 \rightarrow Appuyez sur la petite image de dialogue dans la barre d'outils (toolbar), voir Fig. 7, qui vous ramène au dialogue précédent. (Ou l'icône suivante vous permet de revenir à l'un des dialogues précédents.)

Fig. 7. Utilisez le menu outils (Toolbar) pour retrouver un dialogue précédent

Vous voyez que le dialogue s'est «souvenu» des paramètres tels que vous les avez laissés, lorsque vous avez appuyé sur OK. C'est souvent préférable ainsi.

→ Mais cette fois, appuyez sur le bouton Reset (Réinitialiser) en bas de la boîte de dialogue pour effacer tous les paramètres.

 \rightarrow Omettez les 4 premières variables et sélectionnez les 6 dernières.

Comme ce sont toutes des colonnes numériques, les boutons radio sur la droite vous ont permis de créer un graphique « à facettes », de sorte que vous puissiez voir ce que c'est!

 \rightarrow Cliquez également sur la case à cocher pour sauvegarder le graphique.

→ Nommez-le **one-var diamonds** (Prière d'inclure un «tiret» et un espace.)

 \rightarrow Appuyez maintenant sur **OK**

Le dialogue n'a pas fonctionné. Au lieu de cela, il donne un message que "le nom ne peut contenir un espace" (ou un tiret). C'est le nom d'un objet dans R et ceux-ci ne sont pas autorisés.

- \rightarrow Appuyez sur OK pour effacer la boîte de message.
- → Changez le nom de façon à ce qu'il devienne **OneVarDiamonds**, Fig. 8, et cliquez à nouveau sur **OK**.

Ceci représente un graphique « à facettes », Fig. 8. Il s'agit de plusieurs graphiques dont l'axe y est le même. L'axe individuel n'est pas toujours nécessaire. Cependant, dans notre cas, les différentes variables ont des échelles très différentes et nous devons en tenir compte dans le graphique.

- \rightarrow Revenez au même dialogue.
- \rightarrow Cliquez sur le bouton **Graph Options** (Options graphiques).

Vous voyez maintenant un sous-dialogue avec seulement 2 onglets, Fig. 9. Un onglet vous permet de changer le type de graphique qui est affiché.

→ Appuyez sur l'onglet **Display**, puis sur le **Free Scale Axis** (l'axe Free Scale).

 \rightarrow Appuyez à nouveau sur le bouton **Return**, puis sur **OK**, pour afficher le graphique illustré (Fig. 9).

Fig. 9. Le graphique d'une variable individuelle

		depth		table		price
	80 -	:	90 -			1
One Variable Graph Options	70- X	1	80 -	:	15000 -	
Types Display	60- E		70 -	i	10000 -	
Specify Layout	50 -	÷.	60 - 50 -		5000-	
	an	;		*	o-	
✓ Free Scale Axis	5	i	60 -	•	30 -	2 *
	3-		40 -		20 -	
Return Help	6-	1	20 -		10.5	
	3-		_	1		1
	- <u>0</u>		0 -		0 -	+

 \rightarrow Appuyez sur **Describe** > **View Graph** pour examiner d'avantage ce dernier graphique, Fig. 10.

Le dialogue View Graph

Fig. 10. Le Menu Describe

		View Graph
Describe Model Climatic One Variable + Two Variables + Three Variables + Specific + General + Use Graph Combine Graphs Themes	Data Frame: diamonds v Ggplot Graphs last_graph one_var_diamonds	Graph to View: one_var_diamonds Display Options Obisplay in Interactive Viewer Display in R-Viewer Obisplay in Output Window Options Display in Separate Window
View Graph	Comment: code generated	ed by the dialog View Graph
	Ok Reset	Close Help To Script

→ Appuyez sur **OK** pour afficher les graphiques dans une fenêtre séparée (interactive), Fig. 11.

Survolez un graphique particulier pour ajouter automatiquement des résumés numériques, Fig. 11.

Fig. 11. Les resultats View Graph

Inclure le résume de donnees

4. Quelques résumés

Les analyses impliquent souvent des résumés numériques et graphiques.

→ Appuyez sur Describe > One variable> Summarise (Décrire >Une variable>Résumer).

→ Sélectionnez à nouveau toutes les variables (comme vous l'avez fait lors de la première utilisation de la boîte de dialogue Graphique), Fig. 12.

 \rightarrow Appuyez sur OK pour afficher les résultats indiqués sur la Fig. 12.

Fig. 12. Resume d'une variable individuelle

Ce n'est pas tout à fait juste. La variable indiquée sur la figure 12 n'est pas très claire. Certaines catégories ont été combinées.

 \rightarrow Retournez au dernier dialogue.

→ Dans le dialogue, Fig. 12, modifiez les Maximum Factor Levels Shown (niveaux de facteur maximum) affichés de 7 à 10. Appuyez sur OK.

:43.0

:61.8

:79.0

Z

:

0.00

: 3.54

:31.80

Les niveaux sont maintenant tous donnés pour cette colonne de facteur.

→ Examinez la correspondance entre les valeurs données pour la variable x sur la Fig. 12 et celles du box plot pour la même variable sur la Fig. 11. Pour vous faciliter la tâche, elles sont présentées côte à côte sur la Fig. 13.

La médiane des deux graphiques est très proche (Fig. 13). Les autres valeurs sont-elles les mêmes ? La correspondance est-elle utile pour comprendre (ou enseigner) ce que fournit un box plot?

5. Un petit défi

→ Retournez à la boîte de dialogue Describe/One variable/Graph (Décrire> Une variable> Graphique).

 \rightarrow Avec les mêmes 6 variables, de **Depth to z** (Depth à z), passez d'un boxplot à un Violin Plot (Ne vous inquiétez pas si vous ne savez pas encore ce qu'est un Violin Plot).

→ Examinez la forme curieuse (Fig.13) de certaines des variables, en particulier celle dénommée **table**. (Vous devriez remarquer quelque chose qui n'est pas forcément évident à partir d'un boxplot.)

Fig. 13 Curious results from a violin plot

→ Examinez ceci davantage (Un indice : Appuyez sur **Describe > One variable > Frequency** (Décrivez> Une variable> Fréquences.)

6. Une analyse plus ambitieuse

→ Appuyez sur Describe > One variable > Frequency (Décrire> Multivarié> Corrélations). (Notez que seules les colonnes numériques sont visibles pour cette boîte de dialogue.)

 \rightarrow Sélectionnez le bouton Multiple Columns en haut de la boîte de dialogue, Fig. 14.

 \rightarrow Sélectionnez les 2 premières variables (Carat et Depth) et les deux dernières (y et z), Fig. 14.

 \rightarrow Cliquez sur le bouton Options pour accéder au sous-dialogue, Fig. 14.

	Correlation	1
Two Colum	s Multiple Columns	Correlation Display and Graphics
Data Frame: diamonds v Numerics ^ carat depth Ad table price x y v v Dat	Variables: diamonds carat depth y z	Graphs None Painwise Plot Options Correlation Plot Scistler Matrix
Method Pearson Kendall Correlation Matrix Result Name Comment: code generated by Ok Reset	Missing Spearman Complete rows only Pairwis Options te dialog Correlation Close Help To Script	Save Graph

- \rightarrow Sélectionnez le Pairwise Plot. Puis appuyez sur Return (Retour)
- \rightarrow Appuyez sur OK pour afficher les résultats illustrés ci-dessous (Fig. 15).

7. Réflexions

Il est facile de suivre les instructions sans vraiment comprendre ce qui se passe. Nous énumérons ici quelques-uns des points qui ont été couverts:

• File > Open Library(Fichier>Ouvrir à partir de la bibliothèque) a été utilisé pour choisir un ensemble de données pour l'analyse. De même, la boîte de dialogue File > Open Library peut être utilisée pour importer vos propres données.

• Les données étaient pre-preparées pour cette analyse. Nous avons donc utilisé le menu **Describe** (Décrire).

• L'exploration initiale des données commence souvent par l'examen des variables une à la fois. Nous avons donc commencé par une description à l'aide de **Describe >One variable>Graph** (Décrire> Une variable> Graphique).

• Dans presque toutes les boîtes de dialogue, la première étape consiste à **Select the Variables** (sélectionner les variables) à analyser.

• Nous avons souvent eu à revenir à une boite de dialogue pour reviser l'analyse.

• Les dialogues "se souvenaient" des réglages récents, de sorte que les changements se faisaient rapidement.

• Certains dialogues ont des sous-dialogues offrant des options additionnelles.

• Du point de vue statistique, nous avons facilement pu générer différents types de graphiques qui peuvent s'avérer utiles.

• Notez que la figure 15 est une fusion entre un graphique et un tableau, présentant quelques caractéristiques des deux.

8. Prochaines étapes

N'hésitez pas continuer à explorer le menu Describe avec cet ensemble de données et produire des tableaux et de graphiques additionnels pour explorer davantage les données. La partie suivante du tutoriel explore le menu **Prepare** (Préparer) à l'aide d'une deuxième base de données de la bibliothèque R-Instat.

9. Commentaires et signalement des bugs

R-Instat est encore en mode de développement avec de nombreuses améliorations et de nouvelles fonctionnalités prévues pour les futures versions. Merci de partager vos commentaires pour nous aider à améliorer R-Instat. Il existe plusieurs façons de nous les faire parvenir:

1. Pour des commentaires de type général, vous pouvez nous contacter par courriel à R-Instat@AfricanMathsInitiative.net.

2. Notre page « problems » sur notre compte GitHub peut être utilisée pour signaler des bugs spécifiques ou des suggestions et c'est la meilleure façon de contacter l'équipe de développement. Notez l'acces a notre page "problems" ci dessous:

https://github.com/africanmathsinitiative/R-Instat/issues. Cliquez sur le bouton vert Nouveau problème sur le côté droit pour envoyer votre message.

Lorsque vous signalez un bug ou un problème, donnez-nous un maximum de précisions pour que nous puissions reproduire le bug, en collant le code R du fichier journal et en nous envoyant les données si possibles.

L'équipe R-Instat, Initiative africaine de données

Tutoriel d'introduction : Partie 2: Une deuxième base de données

Introduction

Ce guide fait suite à la partie 1 du tutoriel d'introduction à R-Instat. Nous vous recommandons de commencer par la première partie. Notez cependant que les étapes et de donnes utilisées dans cette parte ne dépendent pas de celles de la partie 1.

1. La base de données Dodoma

Il s'agit des données climatiques quotidiennes de Dodoma en Tanzanie, de 1935 à 2013. Nous sommes reconnaissants envers l'agence nationale de météorologie Tanzanienne de nous avoir permis d'utiliser ces données à des fins de formation.

→ Si les données Diamonds (diamants) sont toujours affichées, utilisez **File>Close Data File** (Fichier> Fermer le fichier de données) Fig. 16.

 \rightarrow On vous demandera « are you sure » (si vous êtes sûr). Répondez **Yes** (Oui).

Prepare File Edit Prepare Describe Model Climatic Edit Model Clin Describe File D 😂 🖬 🔿 🔺 🖎 😫 🗮 🗁 🖉 New Data Frame... Ctrl+N Data View Ctrl+O **Open From File... Open From Library** Import from ODK ... Import from CSPRO ... Import from Databases. Convert... No Data Loaded Save Ctrl+S Save As Export Print Ctrl+P **Print Preview Close Data File** No data loaded

Fig. 16. Fermer le fichier precedent

→ Utilisez **File > Open from Library**. (Fichier> Ouvrir depuis la bibliothèque). Prenez l'option Load from Instat Collection, puis appuyez sur Browse.

→ Choisissez Climatic et sélectionnez le fichier Excel Climatic_guide_datasets.

 \rightarrow Ce fichier Excel a plusieurs feuilles. Choisissez celui appelé **Dodoma**, voir Fig. 17

Fig. 17 Ouvrir le fichier Dodoma

		Import	Dataset		_		
File: C:/Program Files (x86)// Brown New Data Frame Name: Dodoma Import Excel Options	se						
Select Sheet:							
Missing Value String:							
Trim Trailing White Space							
HOWS TO SKID: V	Data P	rama Proview			lines	to Preview: 1	0
Rows to Skip:	Data F	rame Preview	Month	Davi	Lines	to Preview: 1	0
Maximum Rows To Import	Data F	rame Preview Year	Month	Day	Rain	Tmax	0 4
Maximum Rows To Import	Data F	rame Preview Year 1935 1935	Month Jan Jan	Day 1	Lines Rain 0.0 6.3	Tmax NA NA	0
Maximum Rows To Import	Data F	rame Preview Year 1935 1935 1935	Month Jan Jan Jan	Day 1 2 3	Lines Rain 0.0 6.3 1.8	NA NA NA NA	0 4
Hows to Skip:	Data F	rame Preview Year 1935 1935 1935 1935 1935	Jan Jan Jan Jan Jan Jan	Day 1 2 3 4	Lines Rain 0.0 6.3 1.8 0.0	NA NA NA NA NA NA	0 4
Hows to Skip: U	Data F	rame Preview Year 1935 1935 1935 1935 1935 1935	Month Jan Jan Jan Jan Jan	Day 1 2 3 4 5	Lines Rain 0.0 6.3 1.8 0.0 0.0	In the Preview: 1 Tmax NA NA NA NA NA NA	0 4 N/ N/ N/ N/
Hows to Skip: U	Data F	rame Preview Year 1935 1935 1935 1935 1935 1935 1935	Month Jan Jan Jan Jan Jan Jan Jan	Day 1 2 3 4 5 6	Lines: Rain 0.0 6.3 1.8 0.0 0.0 0.0 0.0	In the Preview: 1 Trmax NA NA NA NA NA NA NA	0 4 N/ N/ N/ N/
Hows to Skip: U	Data F 1 2 3 4 5 6 7	rame Preview Year 1935 1935 1935 1935 1935 1935 1935 1935	Month Jan Jan Jan Jan Jan Jan Jan	Day 1 2 3 4 5 6 7	Lines: Rain 0.0 6.3 1.8 0.0 0.0 0.0 0.0 0.0 0.0	NA NA NA NA NA NA NA NA NA NA NA	
Maximum Rows To Import	Data F 1 2 3 4 5 6 7 <	rame Preview Year 1935 1935 1935 1935 1935 1935 1935 1935	Month Jan Jan Jan Jan Jan Jan Jan	Day 1 2 3 4 5 6 7	Lines: Rain 0.0 6.3 1.8 0.0 0.0 0.0 0.0 0.0	I Treview: 1 Trmax NA NA NA NA NA NA NA NA NA	
Nows to Skip: Naximum Rows To Import Comment: code generated by the	Data F 1 2 3 4 5 6 7 < dialog Import I	rame Preview Year 1935 1935 1935 1935 1935 1935 1935 1935	Month Jan Jan Jan Jan Jan Jan Jan	Day 1 2 3 4 5 6 7	Lines: Rain 0.0 6.3 1.8 0.0 0.0 0.0 0.0 0.0	to Preview: 1 Tmax NA NA NA NA NA NA NA NA Refresh F	0 0

Un premier objectif est de fournir des graphiques de moyennes de températures annuelles, à la fois maximales et minimales. Comme ces es données sont disponibles à l'échelle journalière, la première étape consiste à calculer la moyenne annuelle. Par conséquent, nous auront recours au menu Prepare.

Notez sur la figure 1 que la base de données comprend 28 855 observations.

Une différence par rapport à l'exemple des diamants de la partie 1 est que les valeurs manquantes sont visibles immédiatement.

			D	ata Vie					Lange Street	Output	Window	
	Year	Month (c)	Day	Rai	Tmax	Tmin	Sunh	^	(Dadama)			
1	1935	Jan	1	0.0	NA	NA	NA		rm(Dodoma)			
2	1935	Jan	2	6.3	NA	NA	NA		# code generated by the	tDataObjectSpet_colure	e Variable mos from data(data n	ame="Dodoma"
3	1935	Jan	3	1.8	NA	NA	NA		col_names=c("Year","I	Month", "Day", "Rain", "T	max","Tmin","Sunh")),	na.rm=FALSE)
4	1935	Jan	4	0.0	NA	NA	NA		Year	Month	Day	Rain
5	1935	Jan	5	0.0	NA	NA	NA		Min. :1935	Length:28855	Min. : 1.0	Min. : 0.0
6	1935	Jan	6	0.0	NA	NA	NA		Median :1974	Mode :character	Median :16.0	Median : 0.0
7	1935	Jan	7	0.0	NA	NA	NA		Mean :1974		Mean :15.7	Mean : 1.
8	1935	Jan	8	0.5	NA	NA	NA		Max. :2013		Max. :31.0	Max. :119.0
9	1935	Jan	9	0.0	NA	NA	NA		Tmax	Tmin	Sunh	NA's :91
0	1935	Jan	10	0.0	NA	NA	NA		Min. :15	Min. : 8 M	in. : 0	
1	1935	Jan	11	0.0	NA	NA	NA		Median :29	Median :17 M	st gu.: 8 edian :10	
2	1935	Jan	12	0.0	NA	NA	NA	~	Mean :29	Mean :17 M	ean : 9	
1	Dodoma	1.			1		>		Max. :36	Max. :26 M	ax. :14	

→ Utilisez la boîte de dialogue **Describe > One variable > Summary** (Décrire> Une variable> Résumer).

 \rightarrow **Choisissez toutes les colonnes**, puis appuyez sur **OK** pour produire les récapitulatifs illustrés à la Fig. 18.

Les résultats incluent le nombre de valeurs manquantes et il s'avère que plus de 8 000 valeurs de température sont manquantes. (Comme cette caractéristique n'était pas évidente dans la sortie similaire de la partie 1 (figure 12), il s'ensuit que les données sur les diamants n'avaient aucune valeur manquante.)

Les données de précipitations sur la figure 18 sont de 1935. La station a ajouté des enregistrements de température plus tard.

 \rightarrow Cliquez à l'aide du **bouton droit** sur **l'onglet du bas** et choisissez la dernière option **View Data** (Afficher les données) pour afficher l'ensemble des données.

→ Faites défiler ces données pour confirmer que les températures ont commencé à partir de 1958.

Ceci indique que la plupart des 8 000 données de température manquantes de la figure 18 s'expliquent par le fait que les mesures de ces éléments ont commencé plus tard que les autres.

Souvent, la préparation des données pour l'analyse prend plus de temps que l'analyse elle-même. Nous avons essayé de rendre le menu Prepare (Préparer) aussi simple que possible à utiliser. Il y a 5 étapes à parcourir, même pour des tâches simples comme celles-ci. Nous espérons que vous apprécierez, les étapes ci-dessous. Nous verrons dans la section 4 qu'elles offrent un bon côté.

Préparer les données

Souvent, l'étape de préparation comprend le calcul de colonnes additionnelles.

→ Ouvrez le dialogue **Prepare > Column: Calculate > Calculations** (Préparer> Colonne: Calculer> Calculs) comme indiqué ci-dessous Fig. 19.

				(alcula	ations			_			
	Expression	Year>19	57				*					
epare Describe Model Climatic Procurem	ient				Logical and Symbols 🗸			Show A	Arguments			
Data Farmer	Data Frame:			Basic		-			Logica	al and Sy	mbols	
	Dodoma	~		7	8	9	1	+	==	<	%%	[]
Check Data	Variables	^		4	5	6	-	^	!=	<=	%/%	
Column: Calculate Calculations	Year Month		Add	1	2	3	-	Class	1	>	:	(
Column: Generate	Day Bain			Del	0	0	+	Clas	I	>=	And)
Column: Factor	Tmax		Data						Jole			
Column: Text + Baal	Inner	*	Opuoris						icih			
Column: Date	Try	[1] FAL	SE FALSE FALS	E FALSE F	ALSE FA	LSE FA	SE FA					
Polynomials	Save Res	sult into Y	rTemp				~					
Column: Reshape Row Summary												
	Comment:	code gen	erated by the dia	log Calculat	ions	_						
	Ok	Reset	Close		Help	-	To Scrip	ot				

Ce menu fonctionne en tant que calculateur de colonnes. Plusieurs claviers sont disponibles.

→ Cliquez sur le contrôle **Basic** et choisissez **Logical** and **Symbols**. Un clavier supplémentaire s'ouvre comme indiqué sur la figure 19.

 \rightarrow **Double-cliquez sur** la colonne **Year** (Année), (ou cliquez et appuyez sur Add (Ajouter) pour la placer dans le champ de la formule, qui se trouve en haut de la boîte de dialogue.

 \rightarrow Complétez la formule en ajoutant> **1957**, de façon à lire **Year (Année)**> **1957**, voir Fig. 19.

 \rightarrow Cliquez sur le bouton Try et le résultat devrait être **FALSE**, **FALSE**, **FALSE** ... comme sur la figure 19, car les premières lignes de données datent de 1935 - donc pas plus de 1957!

 \rightarrow Donnez un nom à la nouvelle colonne pour enregistrer les résultats, comme par exemple **YrTemp**. Puis appuyez sur **OK**.

Une nouvelle colonne de données a été créée.

L'étape suivante consiste à appliquer un **filtre**, de sorte que les données à analyser ne commencent qu'en 1958, et que « TRUE » apparaisse dans la nouvelle colonne. De nombreuses tâches courantes du menu Prepare (Préparer) sont rapidement accessibles via un menu spécial clic-droit qui est illustré ci-dessous (Fig. 20.)

 \rightarrow Placez le curseur sur la ligne du haut (contenant les noms) et faites un **clic droit**, Fig. 20.

 \rightarrow Choisissez le dialogue **Filter** (Filtre) dans ce menu, voir Fig 20.

		Data View			Filter		
	Year N	Month (c) Day Rain	-1				_
1	1935	Rename Column	N	Data Frame:			
2	1935	Duplicate Column	N	Dodoma V		Filter:	
3	1935	Delete Column	N	Filters			Ĩ
4	1935	Convert to Factor	N	no_filter		_	-
5	1935	Convert to Ordered Factor	N		Add	Define New Filter	
6	1935	Convert to Character	N				
7	1935	Convert to Character	N				
8	1935	Convert to Logical	N		Data Options		
9	1935	Convert to Numeric	N	Apply Options	- Autor		
10	1935	Levels/Labels	N				
11	1935	Ersens to Here	N	Apply As Hiter) Apply As Subset		
12	1935	Freeze to Here	N				
13	1935	Untreeze	N		-		
14	1935	Sort	N	Selected Filter Preview: ()		
15	1935	Filter	N	Comment: code gen	erated by the dialog) Filter	
16	1935	Remove Current Filter	N	Ok Reset	Close	Help To So	taine
17	1935	Jan 1/ (11)	N	Tiodor	Cioco	10.00	adhar.

To choose a filter

Fig. 20. The right-click menu

 \rightarrow Cliquez sur **Define New Filter** (définir un nouveau filtre) Fig. 20.

 \rightarrow Dans le sous-dialogue, choisissez la colonne YrTemp. Remplissez la condition pour qu'elle indique **YrTemp == TRUE**

Fig	. 21 Créer le filt	re	Appliquer le filtre					
	Define N	ew Filter	Filter	×				
Data Frame: Dodoma Variables Day Rain Tmax Tmin Sunh YrTemp Variable Condition	Filter By: YrTemp Add Condition Edd: Condition Remove Condition Clear Conditions	TRUE	Data Frame:					
Fliter Preview: New Fliter Name: Fliter1	V		Selected Filter Preview: ((YrTemp == TRUE))					
	Return	lelp	Ok Reset Close Help To Script					

(Notez que == n'est pas une erreur, et le mot **TRUE** doit être en majuscules, Fig. 21)

→ Appuyez sur **Add Condition** pour ajouter une condition, Fig. 21, puis appuyez sur **Return** (Retour).

 \rightarrow Dans le dialogue principal du filtre, appuyer sur **OK** pour appliquer le filtre (fig. 21,). Notez que la première colonne, qui contient les numéros correspondant aux ligne, est maintenant affichée en rouge et la première est la ligne 8402, c'est-à-dire le 1er janvier 1958.

La troisième étape préparatoire consiste à **changer le mode de la colonne Year** (Année) **de numeric** (numerique) **à factor** (factorielle).

→ Placez le curseur dans la colonne **Yea**r (Année) et dans la rangée supérieure (nom). Faites un **clic droit**, Fig. 22.

 \rightarrow Cliquez sur **Convert to Ordered Factor** (Convertir en facteur ordonné).

Fig. 22. Conversion numérique > factorielle de la colonne Année

Les données résultantes

1	Year	Month (c) Day Rain	Tmax	~	-	Year (o.f)	Month (c)	Day	Rain	Tmax	Tmin	~
8402	1958	Rename Column	28.6		8402	1958	Jan	1	0.0	28.6	18.7	
8403	1958	Duplicate Column	29.7		8403	1958	Jan	2	0.0	29.7	18.8	
8404	1958	Delete Column	29.7		8404	1958	Jan	3	0.0	29.7	17.6	
8405	1958		30.5		8405	1958	Jan	4	7.1	30.5	18.8	
8406	1958	Convert to Factor	31.2		8406	1958	Jan	5	8.9	31.2	19.2	
8407	1958	Convert to Ordered Factor	31.1		8407	1958	Jan	6	2.0	31.1	19.1	
8408	1958	Convert to Character	27.2		8408	1958	Jan	7	0.0	27.2	18.1	
8409	1958	Convert to Logical	28.9		8409	1958	Jan	8	0.0	28.9	18.8	
8410	1958	Convert to Numeric	30.0		8410	1958	Jan	9	0.0	30.0	16.7	
8411	1958	l evels/l ahels	30.1		8411	1958	Jan	10	0.0	30.1	17.3	
8412	1958		31.2		8412	1958	Jan	11	0.0	31.2	19.3	
8413	1958	Freeze to Here	31.2		8413	1958	Jan	12	0.0	31.2	19.1	
8414	1958	Unfreeze	32.1		8414	1958	Jan	13	0.0	32.1	18.3	
8415	1958	Sort	31.8		8415	1958	Jan	14	0.0	31.8	18.6	
8416	1958	Filter	32.9		8416	1958	Jan	15	0.0	32.9	18.3	
8417	1958	Remove Current Filter	33.6		8417	1958	Jan	16	0.0	33.6	17.8	
8418	1958	Keniove Current Filter	34 1	*	8418	1958	.lan	17	0.0	34 1	19.2	~
4 1 1	Dodoma		1	>	- F	Dodoma			14			>

Les données quotidiennes sont maintenant prêtes à être résumées pour produire les moyennes annuelles.

→ Ouvrez le dialogue **Prepare > Column: Reshape > Column Summaries** (Préparer> Colonne: Remodeler> Résumés de colonnes) Fig. 23.

Fig. 23. Le résume de colonnes

File	Edit	Prepare	Describe	e Mo	del	Clin	natic Pr	ocurement		Co	lumn Stat	tistics	×
2	-	Data Chec	Frame k Data	ulata	* •	Da	ata View		Data Frame: Dodoma	~		Variable(s) to Summa	rise:
	Year (Colu	mn: Calc	ulate		Tmax	Tmin	Sunh	Year	_		Tmax	
8402	1958	Colu	mn: Gene	erate	*	B.6	18.7	NA	YrTemp		Add	Tmin	
8403	1958	Colu	mn: Facto	or	+	9.7	18.8	NA					
8404	1958	Colu	mn: Text		+	9.7	17.6	NA		0	Data ptions	By Factor(s):	
8405	1958	Colu	mn: Date		+	D.5	18.8	NA	Options			Dodoma	
8406	1958	Colu	mn: Resh	ape			Column S	ummaries	Store Results in I	Data		tear	
8407	1958	Keus	and Links				General Su	ummaries	Print Results to C	Output			-
8408	1958	Data	Object	-			C 1		Drop Unused Le	veis			
8409	1958	Data	object				Stack			ues		Summaries	
8410	1958	ROb	jects	_	•		Unstack					Proportions/Percentage	S
8411	1958	Jan	10	0.0	3		Merge		Comment: cod	le generated	by the dialog	g Column Statistics	
8412	1958	Jan	11	0.0	3		Append D	ata Frames	Ok	Reset	Close	Help To S	Script
Carlos and	1100						14 second se	cost of the states					

 \rightarrow Complétez les informations comme indiqué sur la Fig. 23, c'est-à-dire **Tmin et Tmax** dans le dialogue principal, **Année** dans le sous-dialogue, et l'option cochée pour **Omit Missing Values** (Omettre les valeurs manquantes).

 \rightarrow Appuyez ensuite sur **Summaries** pour passer au sous-dialogue, Fig. 24.

Le dialogue résultant

 \rightarrow Complétez l'info du sous-dialogue comme indiqué sur la figure 24, c'est-à-dire avec seulement deux résumés pour le **N Not Missing** (N Ne manquant pas) et le **Mean** (la moyenne). Puis appuyez sur Return (Retour).

 \rightarrow Appuyez sur **OK** pour produire les résumés, Fig. 24.

Summaries X Summaries More Missing Options Commen N Non Missing N Total	1 2	Year (o.f) 1958	Data V mean_Tmax	Count_non_	mean Tmin
Summaries More Missing Options	1 2	Year (o.f) 1958	mean_Tmax	count_non_	mean Tmin
Summaries More Missing Options Common V N Non Missing N Total	1	1958	20.0		
Ctempon ▼ N Non Missing □ N Total	2		29.0	365	16.1
N Non Missing N Total		1959	28.7	365	16.3
	3	1960	29.0	365	15.9
N Missing Mode	4	1961	29.3	365	17.1
All but (upordered) Factor	5	1962	29.0	365	16.1
	6	1963	28.5	363	16.0
	7	1964	28.9	360	15.7
	8	1965	28.8	363	16.0
Numeric	9	1966	29.1	365	16.6
Sum Median	10	1967	28.5	365	16.7
✓ Mean Standard Deviation	11	1968	27.9	366	15.6
Variance	12	1969	29.7	365	17.0
Quartiles	13	1970	28.6	365	16.5
	14	1971	28.5	365	16.3
	15	1972	28.8	366	16.6
	16	1973	29.5	362	16.6
	17	1974	28.8	304	16.2

La figure 24 démontre également que nous avons maintenant **deux bases de données**, l'une a l'echelle quotidienne et l'autre avec les résumés annuels. Cette seconde data frame est celle que nous utiliserons pour produire les graphiques.

3. Produire les graphiques

Il ne reste plus qu'une dernière étape préparatoire. La colonne Year (Année) de la colonne Summary Data (Résume de données) est en mode factor (factorielle). Pour les graphiques, il faudra la reconvertir au mode numeric (numerique). Il est souvent pratique d'avoir accès aux deux différents modes (numerique et factoriel)

 \rightarrow Utiliser **Prepare > Calculate > Duplicate Column** (Préparer> Calculer> Colonne en double (ou faites un clic droit et choisissez l'élément approprié.)) \rightarrow Complétez le dialogue comme indiqué sur la Fig. 25. Appuyez sur **OK** pour produire une autre colonne appelée Année1.

 \rightarrow Cliquez avec le bouton droit sur le titre/le nom de la colonne Year1 et convertissez la colonne en mode numeric (numérique) Fig. 25.

Fig. 25	5. Duplique	er une colonne	Convertir la colonne en mode numerique						
	Duplicate	Column	Data View						
Data Frame:				Year (o.f)	Year1	mean Tmax count non			
Dodoma_by_Year ∨		Column to Duplicate:	1	1958	1958	Rename Column			
Variables Year		Year	2	1959	1959	Duplicate Column			
mean_Tmax	Add		3	1960	1960	Delete Column			
mean_Tmin		O Before	4	1961	1961	Convert to Eactor			
count_non_missing_1m	Data Options	After O End	5	1962	1962	Convert to Ordered East			
New Column Name: Year1		v	6	1963	1963				
Comment: code generated by the dialog Duplicate Column		alog Duplicate Column	7	1964	1964	Convert to Character			
Ok Reset	Close	e Help To Script	8	1965	1965	Convert to Logical			
			9	1066	1066	Convert to Numeric			

Nous sommes enfin prêts à créer les graphiques.

- → Utiliser **Describe > Specific > Line Plot** (Décrire> Spécifique> Tracé de ligne), Fig. 26.
- \rightarrow Complétez le dialogue comme indiqué sur la Fig. 26 pour le **mean_Tmax**. Appuyer sur **OK**.

	F	ig. 26. Th	e men	u line plot				Et le dialo	gue	
De	scribe Mode	l Clima	tic P	rocurement Tools	View			Line Plo	ot	×
	One Variable Two Variable Three Variable	es	ata	View	R	Data Frame: Dodoma_by_Yea	r v		Single Varia mean_Tmax	able
	Specific		•	Frequency Tables		Year		Add		
	General			Summary Tables		Year1 mean_Tmax	- 11	100		
	Multivariate			Multiple Response		count_non_missi mean_Tmin	ing. V	Data		
	Use Graph			Scatter Plot		<	>	Options	X Variable:	
	Combine Gra	aphs		Line Plot		Line Options	1		Year1	
	Themes			Histogram		Options			Factor (Optional)):
	View Graph			Boxplot	(Points			_	
_	20.0	000	-	Dot Plot	ļ	Add Line of Be	est Fit 🗸	With Standard E	TOP	
	29.1	365	_	Rug Plot		Save Graph				
<u> </u>	28.5	365	_	Bar Chart		Comment:	code gene	erated by the dialog	Line Plot	
\$	27.9	366		Consulation Distribut		Ok	Reset	Close	Help	To Script
)	29.7	365		Cumulative Distribut	ion					

Le graphique produit est représenté sur la figure 27.

→ Retournez à la boîte de dialogue Line Plot et remplacez **mean_Tmin** par **mean_Tmax**. Appuyez sur **OK** pour afficher le second graphique également illustré ci-dessous Fig. 27

Fig. 27. Le graphique Tmax

4. Sauvegarder / enregistrer les données

Avant d'utiliser une base de données différente, enregistrez/ sauvegardez ces données afin de pouvoir les retrouver plus tard.

→ Utilisez la boîte de dialogue File > Save As (Fichier> Enregistrer sous), Fig. 28. Choisissez l'option Save Data As (Enregistrer les données sous).

→ Appuyez sur **Browse** (Parcourir), Fig. 28. Choisissez un répertoire et un nom appropriés. Appuyez sur OK dès votre retour à la boîte de dialogue Save data (Enregistrez les données).

Fia. 2	8. Enred	aistrer/sau	vegarder	les	donnees
1 ig. 2	0. Linc	313ti ci/3uu	reguiaci	103	aonnees

Edit Prepare Describe New Data Frame Ctrl+N Open From File Ctrl+O Open From Library		Model	Climatic	Procurement	Save Data As					
			Data View							
Import from ODK Import from CSPRO Import from Databases		max	count_non_ 365	mean_Tmin 16.1 3	Save Data To:	C:/Users/Roger/Documents/R-Instat/Dodoma Tutorial.RDS				Browse
			365	16.3 3	Astronomic .	Click Ok to confirm the save				
		-	365	15.9 3 17.1 3	Comment:					
Conven	re Ctrl+S		365	16.1 3						
Save			363	16.0 3						
Save As		*	Save Data As		Comment.	code generated by the dialog save bata As				
Export		× .	Save Output Window As						1	
Print Ctrl+P Print Preview			Save Log As Save Script Window As		Ok	Reset	Close	Help	To Script	
Close Data File			366	15.6 3	-	-	-	-		-

L'extension RDS est incluse pour indiquer que le fichier est enregistré en tant que fichier de données R. C'est le bon côté auquel nous avons fait allusion dans la section 1. Si elle est bien faite, les données ne doivent être organisées qu'une seule fois. Le fichier et les data frames, peuvent être réutilises et l'analyse poursuivie ultérieurement.

3. Prochaines étapes

Il y a plus d'analyses qui peuvent être explorées avec ces données dans R-Instat et nous vous encourageons maintenant à essayer. La partie suivante de ce tutoriel se concentre sur l'utilisation de données étiquetées.

4. Commentaires et signalement des bugs

R-Instat est encore en mode de développement avec de nombreuses améliorations et de nouvelles fonctionnalités prévues pour les futures versions. Merci de partager vos commentaires pour nous aider à améliorer R-Instat. Il existe plusieurs façons de nous les faire parvenir:

1. Pour des commentaires de type général, vous pouvez nous contacter par courriel à R-Instat@AfricanMathsInitiative.net.

2. Notre page « problems » sur notre compte GitHub peut être utilisée pour signaler des bugs spécifiques ou des suggestions et c'est la meilleure façon de contacter l'équipe de développement. Notez que notre page de problems est accessible a tous:

https://github.com/africanmathsinitiative/R-Instat/issues. Cliquez sur le bouton vert New Issue (Nouveau problème) sur le côté droit pour envoyer votre message.

Lorsque vous signalez un bug ou un problème, donnez-nous un maximum de précisions pour que nous puissions reproduire le bug, en collant le code R du fichier journal et en nous envoyant les données si possible.

Équipe R-Instat, Initiative africaine de données